{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## 4.3 Sampling distributions\n", "\n", "In order to use our estimate (the value of the estimator in our sample of data) to make any sort of statement about the true but unknown value of the population parameter, we need to consider questions such as: \n", "> How precise do we believe our estimate is? \n", "

Are we fairly certain that the true parameter is close to the estimate, or do we believe the estimate may well be far from the true value? \n", "\n", "The following thought experiment might help to develop these ideas. Suppose our population is a large bucket full of identical marbles. We want to know the population mean weight of a marble (our population parameter of interest). To estimate this population mean, we can simply sample a single marble from the bucket. So our estimator is the weight of the single sampled marble. Now suppose we took two samples: we sample a single marble, weigh it, put it back in the bucket, sample another marble and weight that one. In this case, our estimate (the weight of the sampled marble) would be exactly the same as the estimate from the first sample. No matter how many different samples we took, the sample estimate would be identical. In this case, because all possible samples would give us an identical estimate of the mean, we can confidently say what the population mean is using a single sample of one marble.\n", "\n", "Now consider a bucket full of different marbles. In this case, randomly sampling a single marble and using the weight of that marble as an estimate of the population mean weight could give us a weight far too large (if we just happened to sample one of the very large marbles) or far too small (if we happened to pick a very small marble). However, if we were to pick 100 marbles and take the sample mean of those 100 marbles as our estimator, we would expect our estimate to be closer to the population mean. If we were to resample another 100 marbles we would expect the sample mean weight to be fairly close to the mean weight of the previous 100 marbles. Conversely, if we took two samples containing one marble each, we might expect those two weights to be quite different from one-another. \n", "\n", "This thought experiment makes it clear that in order to use our single sample of data to make statements about a wider population, we need to think about what would happen if we repeated our sampling: if we re-did our study many times, each time calculating the sample estimate, what values would those different sample estimates take? In fact, this is exactly what the **sampling distribution** is. It is the distribution of the **estimator** (the statistic we have chosen to use to estimate the population parameter of interest) under repeated sampling." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4.3.2 Simulated data: sampling distribution of a mean\n", "\n", "We will return again to the emotional distress study. In reality, we do not know the true population mean and standard deviation. However, for the purposes of illustration, for the rest of the session we will imagine that we do know these values. Suppose that, in truth, the population mean age ($\\mu$) is 30 and the population standard deviation (which will will call $\\sigma$) is 4.8. Further, suppose that age follows a normal distribution in the population. \n", "\n", "Under this scenario, the following code draws many (10,000) different samples from this population, with each sample containing the ages of 10 people. Note the line `set.seed(1042)` is coded to keep the same pseudo random number starting point. " ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[1] \"Ages of the 10 participants selected in study 1:\"\n" ] }, { "data": { "text/html": [ "\n", "
  1. 17.897
  2. 30.27
  3. 26.896
  4. 35.448
  5. 28.514
  6. 33.891
  7. 42.021
  8. 25.994
  9. 31.061
  10. 28.756
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 17.897\n", "\\item 30.27\n", "\\item 26.896\n", "\\item 35.448\n", "\\item 28.514\n", "\\item 33.891\n", "\\item 42.021\n", "\\item 25.994\n", "\\item 31.061\n", "\\item 28.756\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 17.897\n", "2. 30.27\n", "3. 26.896\n", "4. 35.448\n", "5. 28.514\n", "6. 33.891\n", "7. 42.021\n", "8. 25.994\n", "9. 31.061\n", "10. 28.756\n", "\n", "\n" ], "text/plain": [ " [1] 17.897 30.270 26.896 35.448 28.514 33.891 42.021 25.994 31.061 28.756" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "[1] \"Ages of the 10 participants selected in study 5:\"\n" ] }, { "data": { "text/html": [ "\n", "
  1. 28.502
  2. 33.725
  3. 35.155
  4. 26.544
  5. 31.147
  6. 31.732
  7. 39.582
  8. 31.223
  9. 25.802
  10. 16.168
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 28.502\n", "\\item 33.725\n", "\\item 35.155\n", "\\item 26.544\n", "\\item 31.147\n", "\\item 31.732\n", "\\item 39.582\n", "\\item 31.223\n", "\\item 25.802\n", "\\item 16.168\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 28.502\n", "2. 33.725\n", "3. 35.155\n", "4. 26.544\n", "5. 31.147\n", "6. 31.732\n", "7. 39.582\n", "8. 31.223\n", "9. 25.802\n", "10. 16.168\n", "\n", "\n" ], "text/plain": [ " [1] 28.502 33.725 35.155 26.544 31.147 31.732 39.582 31.223 25.802 16.168" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Population parameters\n", "mu <- 30\n", "sd <- 4.8\n", "n_in_each_study <- 10\n", "\n", "# Draw samples and ages for sampled individuals, for 100 different studies\n", "# in this example we're going to have a list which generates study_measurements_age repeatedly\n", "different_studies <- 10000\n", "set.seed(1042)\n", "study_measurements_age <- list()\n", "for (i in 1:different_studies) {\n", " study_measurements_age[[i]] <- round(rnorm(n_in_each_study, mu, sd),3)\n", "}\n", "\n", "# Print the sample data for two of the studies\n", "print(\"Ages of the 10 participants selected in study 1:\")\n", "study_measurements_age[[1]]\n", "\n", "print(\"Ages of the 10 participants selected in study 5:\")\n", "study_measurements_age[[5]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now we will calculate the sample mean for each sample of 10 people and plot them on a histogram. In the graphs below, we see a graph of sample means from 10,000 different studies (i.e. 10,000 different samples). This only gives us an approximation to the true sampling distribution, because it is based on a finite number of samples (10,000 samples). However, this is a large number so it will give us a fairly good approxiation to the sampling distribution of the sample mean.\n", "\n", "For this estimator and this population, we can see that the sampling distribution follows a normal distribution. Note that the sampling distribution is centred around the true population value of 30. We also see that almost all sample means lie within 4 or so years of the mean either way (i.e. most sample means are between 26 and 34). " ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "scrolled": false }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtAAAALQCAYAAAC5V0ecAAAEGWlDQ1BrQ0dDb2xvclNwYWNl\nR2VuZXJpY1JHQgAAOI2NVV1oHFUUPrtzZyMkzlNsNIV0qD8NJQ2TVjShtLp/3d02bpZJNtoi\n6GT27s6Yyc44M7v9oU9FUHwx6psUxL+3gCAo9Q/bPrQvlQol2tQgKD60+INQ6Ium65k7M5lp\nurHeZe58853vnnvuuWfvBei5qliWkRQBFpquLRcy4nOHj4g9K5CEh6AXBqFXUR0rXalMAjZP\nC3e1W99Dwntf2dXd/p+tt0YdFSBxH2Kz5qgLiI8B8KdVy3YBevqRHz/qWh72Yui3MUDEL3q4\n4WPXw3M+fo1pZuQs4tOIBVVTaoiXEI/MxfhGDPsxsNZfoE1q66ro5aJim3XdoLFw72H+n23B\naIXzbcOnz5mfPoTvYVz7KzUl5+FRxEuqkp9G/Ajia219thzg25abkRE/BpDc3pqvphHvRFys\n2weqvp+krbWKIX7nhDbzLOItiM8358pTwdirqpPFnMF2xLc1WvLyOwTAibpbmvHHcvttU57y\n5+XqNZrLe3lE/Pq8eUj2fXKfOe3pfOjzhJYtB/yll5SDFcSDiH+hRkH25+L+sdxKEAMZahrl\nSX8ukqMOWy/jXW2m6M9LDBc31B9LFuv6gVKg/0Szi3KAr1kGq1GMjU/aLbnq6/lRxc4XfJ98\nhTargX++DbMJBSiYMIe9Ck1YAxFkKEAG3xbYaKmDDgYyFK0UGYpfoWYXG+fAPPI6tJnNwb7C\nlP7IyF+D+bjOtCpkhz6CFrIa/I6sFtNl8auFXGMTP34sNwI/JhkgEtmDz14ySfaRcTIBInmK\nPE32kxyyE2Tv+thKbEVePDfW/byMM1Kmm0XdObS7oGD/MypMXFPXrCwOtoYjyyn7BV29/MZf\nsVzpLDdRtuIZnbpXzvlf+ev8MvYr/Gqk4H/kV/G3csdazLuyTMPsbFhzd1UabQbjFvDRmcWJ\nxR3zcfHkVw9GfpbJmeev9F08WW8uDkaslwX6avlWGU6NRKz0g/SHtCy9J30o/ca9zX3Kfc19\nzn3BXQKRO8ud477hLnAfc1/G9mrzGlrfexZ5GLdn6ZZrrEohI2wVHhZywjbhUWEy8icMCGNC\nUdiBlq3r+xafL549HQ5jH+an+1y+LlYBifuxAvRN/lVVVOlwlCkdVm9NOL5BE4wkQ2SMlDZU\n97hX86EilU/lUmkQUztTE6mx1EEPh7OmdqBtAvv8HdWpbrJS6tJj3n0CWdM6busNzRV3S9KT\nYhqvNiqWmuroiKgYhshMjmhTh9ptWhsF7970j/SbMrsPE1suR5z7DMC+P/Hs+y7ijrQAlhyA\ngccjbhjPygfeBTjzhNqy28EdkUh8C+DU9+z2v/oyeH791OncxHOs5y2AtTc7nb/f73TWPkD/\nqwBnjX8BoJ98VQNcC+8AAAA4ZVhJZk1NACoAAAAIAAGHaQAEAAAAAQAAABoAAAAAAAKgAgAE\nAAAAAQAAAtCgAwAEAAAAAQAAAtAAAAAAUV7fhwAAQABJREFUeAHs3Qe8HGW9//ETkhCIEGqo\nklAEESkiYKihKSBSoogKKKAgYqNeL39FEASsVBty5aqgQVHBgCgoIE2CFJGil4AGAmkQSAIh\nBEJJ/t/vyTzmOc+ZnS2n7NnZz/N6fTPlmZmdee+e3d+ZzM7p6KAhgAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggg0BcCg/pio2xzQAoM1l5tomyhrKVMVaYo/1ReVcraVtCB\nbRgd3EPR+EYaf1M2/YyGTqu2UdrxlbOdn6uhn1+3ouNfskRz/q1kv5p2Z91sl/y6nNSc3ev2\nqJX2t9uCJZixko7hXcqmylPKo8q/lDeURttbtOLwbOVW/1lr1KDZ67XTa7jZ1jw+AgiUQGCI\njuFC5RVlcU6maN7HlcFKGdteOqj4uOPjnBj1ndXiB/+L6Fguj46l6PijxeoeHao1TlRcGDXS\nKtl/RhsLz9cTjWy4h+u8Xesfn7ONSvubs2hLz3q/9v41JTwHYbhGjUdVye/uaJtn1LgtFutd\ngXZ5DfeuGltDoILAMhXmM7scAqvoMP6ouCAYVuGQRmv+j5VvVOhnNgKpwD6a4TP55yvhrGK6\nTKtN+2flO8oDyq6ttvO9tL+raztXKv6lO24zNDErnpEzjl8OCrMQQKC8AukbZXmPtD2P7Ggd\n9h7RoT+m8ZsVfyDupuykLKe4naxcr/zZE23S7PB4dqy+7KGM7WUdVDjG3ji+UdqIXyc9bQPN\n/jwdkP8nplIbaPtbaT97Mv+tWtn/sxCaPf6krBhmFAyr+RWsShcCCCDQegIU0K33nNWzxwdE\nC1+q8U9G02dr3P9de3U2z9fDj1PaqYD+YHbsZR7coYPbqBcP0K+TuPm/+BtpA80+Pq68Yxpo\n+9uIebV1NowWeFHjlyuLonlFo9X8italDwEEEGg5AQrolnvK6trhraKln47Gw+gEjdykrKO8\nFGYmQ18zvL+ym+LlfMbaZ2sfVn6lPKXEzWe1x2Qz/qrhRGU35d3KJsp9yu+URxQ3X0Liwn17\nxdu6XfFlJ68rcTtKEytlM36u4Xxlb2UPxfPvUfzfz88qtbaPaEEfk1vY1yVTHR2HaWTNbOLX\nGk5T3qvsrGys+MuX1yk+nrzmM3mHKP4y1qqKHa5RpiqfV8KZPv9iM0+ptfk53U/x0Pt0i2LP\nSs2+B0WdF2g8LhB9dvEIxWcf11N8rbxfK7cqPr74edhH035+43a4JmYq/sXLlz94v/ZU3Pwc\n36Z8WtlWuUu5VpmiFNmru0uz4fsUX1/7mHKr8iclbUdqhq3dblXu90jUPqbxkdn0HRreq6yk\n+LXlbYfm5/ck5WXl4mxmLfvr19KhyubKCGWS8pDiY16gpK2nr7F0e+l0rfuzllb0fo9JNnBC\nNn29ho8kfWGyVr+wfDz063issr7yoOLXm4d5bbBmfkDx6+gtyr8Vv94mKC8r9Tb/HPv1PEpZ\nWfElKo8r45Unlbzmfaj1vXAZLRv8vC3/3K2ujFP82C8qf1F+o/hnzL+A2GN3ZU3lTuUGxfsU\nt8004f12m6z4PSXM2z6b92cNb1QaaZtoJf+sba0sUvx8+D3mAaXW1lfHHh6/kX30e5t//jdS\nfD2/XzN+n7tJ8ftn/J6oyR6//3sblVq9++Lt+POi0c+T3v7ZqXRczEegVAJ36Gj8xuD4A/wb\nit98am1+w/cbaNhGOpyjvrHJxs6Jlv+axi+KpsP6/vDYQdlTmZvT/z+alzZ/kIT136NxF8xh\nOgyna94uStz20kTo99BvJqFN1EjoOyvMzIb3RX3+QLkqmg7r+IPvZCVtG2pG3v49p/k+7vlK\n2MZojdfS/AF7ivKaEtYNwys0L3wIeN7lSmhFx7+vFpqthO2kQxeYfuMOzdtNlwnTn88W+ky0\njPfLH+ZhGQ/DcpXs4/VdyJyqvJFsw9v5qfImJW4uWMNjnRh3ZOPxa/n/ZfP8XIV10qFtQqu0\nv6HfxbBfD+k2PP2YsrOStp68xtJtpdP17M8YrZy332HeR9ONR9O1+t0dPca3Nf7LaDo8zkLN\nO1pJ22jNcLEZlouH/kV2i3SFgmm/nq9R4m3E436tHZSzfr3vhX6ceLvbanpqMs/9/qV/hWwY\nL+9xvzdupsTtcE2E5fyL2ZFK3uvO76HLKXGr9hr+rBZ2YRm2H4Y2+aoSv3dqsmLrq2P3Azay\nj/4FPs8oHN949S/rjUetr342G9kX/4zdo4T9DcNaPk9Ga73e+tmJeBhFoPwCH9chhh+2eDhZ\n83+gHKikRYhm/addr7F4vac07WJgUTTfxWD8Rn1O1Oei3ev7g/GJaL7nzVNCMThd4/E23e99\nj9vjmvB8x28cHnp9byfM99D7s7YS2l4aifvjD4GiD5T4DXRWtg1/uKQfgt6H0Upoy2gkLtT8\n2F7fdh63SfxmHq+rrortI+rx+iHexqNK3gfe5ZofWqXjX0sLPK+E7fk5+L3is7Zxwfo1TYfm\n7Ybl02EojD8TLROe/7Cs93mNbGOV7OP14/XyjvWibFth0KwC+kPagfg59X7HhmF6j7Cj2bDR\n11iymW6T9e7PGG0hWOcNP9rtEZbO2LBg3fgXkLiADlYvaV3/khQ/5iuaDq8RjXZ++dnvV/Ey\nT2s6fr/wz/yaSi3tm1oobMvvS34O/LoP7ynu83j8HqLJzuv+w3oePqUUvRcOVX+8/IJs2u8f\n3t+4zyciPO39Ce81of8JzVtGCe1wjYQ++wYHF9thPPSfF1bKhpV+5tz9SSWs5+GrSmzieecq\ntbS+OvZG9nEH7XDs4tfXw0owD8d8WnJg92k69IXnpJb3/2QzXSYb2Rc/941+ngzTur35s9Pl\nYJhAoB0E/lcHGd4I8oYuQL+jLJ9grKfpUJz6DWjvqN+Fd7yt7aO+c5K+CZpeMev32YN4vTc0\nvX/Wt4WG8Yfpr7P5YfC4RuJ1wz4P0vwPKuEDysv8SAmtUgHp/qIPlPgN1Nv8lhJ+2fiExuN9\n8Rt7aEdpJO77fOjQ0IYvJv3ra7paW1YLxMf/D02PzlbyPqVn1H6W9XlQ6fgPVV/Yzxuj5T3q\n/XTfNOVaZYTi5tfEPkpYz0OfrfNzt5rilhbAz2bzjtTwLCW0Svbp+g9phVHZSj5Wv57C4/tD\nfuOsz4NGCmjbev9jw5uyeZtpGFql/fWHon+JCvt0g8Y3UYYquyguskLfZI0PV0Jr9DUW1s8b\nNrI//gX4LcqXlLCvs7J5nr+iUqnV6hcX0H6MryvDso36/cTvMeGxj8nmexDvk19LByguKjZV\nblPCOhdqvJYWPx87RSt4m3coLrD8vByphObXfb3vhX7+w755+Kqyp+Jmz/jn2f3+GVxJsYlt\n4nXfrunQDtdI3DdV0+H9d3WN+/UX+hdqfEMltEqvYT+un++w3mUaX1fxvhwdzfd77NpKtdYX\nx97oPvqX7PDaulnj4XPO+xi/Ju0Wt7742WxkX47SToXnxcPPRzu5t8aLPk96+2cnemhGEWgf\ngQ/pUF10xT+I6fgd6vebVNxcnG6kuBCIm99YffYobGPfqPOcaL4Li1WjPr/Bh3U8/J+oz6Oe\nDv23ekbU4g+cBzXf+xa3b2oirDs/6tgrmu/+wVFfpQ8ULxK/gd6vaX/Axu0pTYTH8xtVaNdr\nJMz3G3baYh8vt366QM50eoZwbLKMz7757Eh43J9F/ZWO/xPR8n4TPl3ZUgmu6WtBXZ1ttP4N\nj+Ohi8+4fUYTcb+n81ol+3T99LWXHusJ0cYnaTw89onR/DDq103o/39hZjb8SdR3VdLnyUr7\nOz5ab4rG/bMRt7dpIpxx9WMfE3U2+hqLNtFttCf7c5S2FnxmdNty8YxqfnGx4vei9Ofp0eix\nz4weamo0/wfRfI++L+rz63+4Z1Zp8c/tLVr2A8rK2Tr+BW1INp4O/HOxkZK+Hiu9Fw7VssHS\nw/OUuH1PE6HfBd6bo851oj4vs1vUd3jS519g4+b3WL//hW1/Ieqs9BqOn/c3tPxa0ToevVcJ\n2/tq0pc32RfH3pN9XFE7uaNi17h9WRPhuO6JOzTeFz+bfoh69+V6rRP2sd7Pk97+2fH+0yKB\n9E0s6mK0RAK/0rFsrvjD/IuKfxBfUeK2syZ+Es/QuH9wJyt/VbZXXJT8UpmuxB9WadGg7s7m\ndedk4x68EI171G/ocYuXrbRNL/87xfsWN5+ZDM0fhLWcKQnLVxvepQX8IRe3mdFE+AD2rA2j\n+XlveDdE/bWOxtv083ZHsuIzmnZxWE+7TQu7sHNbQXHR4m3MUq5QXJyMUHra/NprtPlY/5Ks\n7GN9IJq3UTRebdRFUG+33aMNXq7xhdG0Rx9R7ozmbRWNx6P1vMbi9dLx3tqfdLu9Of1PbSz9\neZodPYDPiLv5PcZnQkN7TiP7RnGx61/S3bxOXIR2zsz5J/6Z3E39Vyl+bBeJLja3UPJaT98L\nvf24xe+FT6ljWtQZvw96dqX3Qu+T3wvjZqP49faWuLPC+CbR/Ckaf6cSOz8W9deyvWjxztHe\nOPae7KNPEITPmoM1fq7iX+i+qoRWydj9vfWz6W3Vuy/xe3/82vW23Cp9nvTFz86SR+Tf/wj4\nDYjWPgKTdKjfyLK8hh9Rvq74rJ7bu5XByhueUHNhdaHy4Wxcg9yWfhiGheIPCc8LH3ah//kw\nkg1fTaYrTc7I6ZiWzNtA0zOTeY1Opvvp7bi4y2vrRzNd7KWtkX1aP9rI0xpPf3lwd55JtFq3\n0cmac7Tyv4qf89B8BuuQLP4wPkX5sdJI83/5ehuNNvtVO9bRFTa+TM58nxkLrTeKabutFTao\n4RPReDz6uCbGZjM2izui8XpeY9FqXUZ7c3+6bLiXJ57M2V78sx+em7douTDuVU7LWS+e5WI7\nLvbivjB+vEa2VFwkhubXyrZZvqLh75VjlPhnqi/fC9PnPrbQblRs/tnKWzZ+L9yg4tpLOzZe\nOtp5AsDHX6nFv9BUWiadX/Q5UOux92Qf99MOna1U+uXV+1vpM8x96T56XqX3f/cVtXr3Zf1o\nY/V8nvTFz060K4xaYAgMpRVwcXyY4jOxPtO4vRK3lzXxE8VnX67JOlbUcBvlHsVnH29RwgeN\n/1vwT9m8WzX8szJScav05pMWzEuWXvpv3pv/0t7KYy7y0uYPuLjNjSd6OJ6eVfTmKh2zPyyC\nSxjGD583L+7PG4+PpdJZ4TflrVhl3mXqv1U5VhmnbKrEzc6XKi4M/Vqot7mA7klbucLKPrsS\nmouIvBYXy6F/WBjRcHE03uiof9H0z4V/btzCcMnU0n9XWjpa8ReKel5j0ea6jPbm/nTZcC9P\n5L0u8p6P9P3hLu2HvSu1vG2ky87TjHcpByqfUHZV0veO92neFcpuiltfvBfG+5oe55JHrf7v\nKlrExX/6XhQfT/zeUWmL8ePP0kIPVlpQ86cW9FXqSj8HGjn2RvfxCO1UfJLgYU3/SblV2Vz5\nuuKWGi6Zu+Tf3vjZ9JYa2ZdGP09iLz92b/zseDu0SIACOsIo2ajfEPaLjmlHjU+MpsOoP1Di\nFooAf4iE4tnF9tuVp6IF46LAH9z92bbKebD4DIWP/fGcZRqdFb/hV9vGFC0QiuT0lxavu5v/\nqbNNjpb3h+Zais9Eh+YP0bT4DX3Vhk9qgVOVLyrrKLsrH1BcYPiM5qBs+hYN85ofu1LL++Cp\ntGzefL/GNlCeSDrj5zp+nuMPjfQXCh/Hmsl2Kk0WHVO6zhTN2CKbuV3aqWkbbh3N9wd4Xqvn\nNZa3fpg3RSO9sT9he40M6/Er2v4UddrFz53b5coPO8d69o/fryYoVyv+DHRBvZdyhLK+4rar\nspoyWxmo74Xed78vp6+p+Ofj3+qv1uKfIZ9s2Ufxe+hAao3u45d0EP4ZdPu+8rnOsSX/hJ8T\nTxV9hvXWz2Yj+zJF+9bI54nX64ufHW2WFgR6640ubI/hwBG4SbsSvwn6w2d3JbyZeE9dMJ3n\nkaz5zTO8Ge8UZmr4kPJUNO3CcNlour9/EXNx947o8f06Pj6afkTjPS3eos3VNfr7aOkDNB7/\nErOtpv876q911M9JOIvjYuILyYqHaXpUMq/a5Fla4E7lOeW32cIzNByvHKTcnM3zYGg07tdI\n3OLXQTzf4+myaX8t02dooVBAeXk/9xt5JGv3hxENH4vG46LVsz+kxGeu4226P97XomPysnFz\nERbaIRrZIUxkwxM0XD8b9wfaH7Pxvho0a38a9StyeEWdf4sWsG/c/Jz6l8trFZ9JXEEpalup\n8xplkrJA2Ubxfk9UzlAOVeIWXgcD+b3wdO1w/FreTdPxa//v8QFVGPf7QGj+TPAvD6H588I+\nf1X+V9lXaUZrZB/9P2ibRDt7XTTu0bHRdF9/hjW6L41+nvT2z05ExWgQ6OsXTXgchv0vMEcP\n+U3li9lDu+j4s+IzKrcpqyouhJdTQnOR7f/Cc5u+ZND57xj960LAHz57Kl9W4lbtgytetjfG\n/abuY7hQ8X5+WNlDCe0rYaQJw+/rMV3g+gyoP9hsdrfiMxx2HKrU257WChcrx2UrnqShP+hu\nVHwGKszXaM3tRS25Y7b0ARr6Fynvq994/QG6mxKarUPzenFz4fKA4g/Y38QdGnfB2NN2uDbg\nD58JymjlZCW0ezVyfZjQ8JFo/H0av0DxLwIugD6vFLX4uHbTguco6yl+/KLm58WFnT+o/bq8\nRfmpMlmx7zglNC/r10JftmbtT6N+1Sy+oQXC68oFzyXKL5SNlTMU/xxsqPg9aL5S1P6lTr8W\nVssWukxDv+792t1cOUYJ7TGNzMwmpoeZGo5RTlAGynvhB7Uvf1Rs9GblRCW0BzVydZgoGP5B\nfQ8rW2TL/FRDv8fPUI5QdlDcfOw2a0ZrZB/nakdfVpbPdvgrGj6fjX9Sw32ycQ/8+unL1ui+\n9OTzpDd/dvrShm0jMCAF/IF+k7K4hviDaagS2iiN+M0mb10Xg/5QCX3naDw0j4f5fwkzo2Ho\n8zA9m/HVaN27onU8+njU5zPi8XbicZ+Nittemoj7bRLaRI2EvrPCzGx4X9R3WtLnyVui/m8l\n/btq+oWoPzyGz3qdkswfrelamj/0XZSFbcVDP9avo76faTy0Sse/nBa4QYm3kzc+Qcv4F4G4\nPaCJdNnzswU+E/U9Ea+UjFeyj9e/Xeu4kEkfy9Mu2MIHu0Y729v07xwlb3kXT9dHfV/UeNzG\naSJvvRHZQpX2191rKi5A8tYP8/6s/hWVuPXkNRZvJx1vdH+O0obC/s5IN1plupqff3EI2z4j\nZ1u3RP3xz5NfexdFfWEb8dCF7luVWpqLJv+SGK+fji9Uv08uhNbIe6HfS+PtvjtsLBt+Jeq/\nJ+lbJurzNvaO+g+P+l7S+L+j6fjx/MvEWCVuRa/hd2jBp5R4G+m4fyGtpfXVsTeyj35fSo8j\nTMfH69dEXET3xc9mo/uyq/atkc+T3v7ZqeW5b6tl/INKK6+AC933KIcpLkTS5jdgv1G4aPmU\n8poSmt9cfBbvkTAjG/5Tw10Un6EI7cNhpJ+GLvZ95mV29Hg+FhfB/iBvdrtNO+A3vZ8o/oDz\nB/yVyh7KdUrcXo4nCsZ9rNsoVymvZ8v5g+BBxc/HrUponl+t+QPjQMWF5PSchZ/VvJOVjyjp\n9j6neT6m0Lw/ffFe8qS2u4Pis0/xa/Nvmt5OuUuJm1+r+yqTopn+pcW/VO2oPB7NT4/p9+r7\nSdTv0eeUVZN5eZPPaOZuysXK/ynxtm17nLKn4qK/P1oz9qcnfkUmtjxeOVLxe9giJTS/v/kX\nR7/+Hw0zqwxvyJb3ayLeVljNxzFG+WuYoeFAfS/0a3tbJT2WBzTPx3C7UmvzOn5/maC4WIub\nfw4/q5wYz2zCeCP76Pc3F/7hPdO7/bJyofJWxcfmNkwZ1znWd/80ui+Nfp709s9O38mwZQRa\nQGAF7eMWis+GbKAMUqo1F0Zedmdl9WoL92G/ix+/ITh+M3fz/m+qbKUMVgZCG6mdsHOl5g/7\ncBwe+kxwvW24VvAHpB+rN5qf43WV7bOspWG118YQLfN2xR+6jRyDVqur+Zi9f6vVuNaaWm47\nxWfD6mne/k7Km+tZKVnWRbcL9mb+vMS71J/70xt+8b6n42/SDL8OtlZWSjvrnPbP6WbKborf\nR5ZXitpAeC88XDsY3j+ejXbW/1PiXzZ76zXn93y/V3k4UN5btStdWj37aB//suHPP793NbPV\nsy+9+XnSmz87zfTjsRFAoE6BvAK6zk30y+Jf06P4A262cr+yuxK3MzQRPgAnxx2MI4AAAlUE\nKhXQVVaju0UF+DwZwE9cs38TG8A07BoCDQncma3ls37OFcp1yjzFZ2t9Jj+0S8MIQwQQQAAB\nBBIBPk8SECYRQKB+gVY5A+0j+7kSzjJXGvrs9LJemIYAAgjUKMAZ6BqhSrQYnycD9MkcqNc2\nDVAudquJAr5+bZbiQvompdYvDWnRfm/+Io6/3OfrQf0z5ut3Byn+Qpnnf0s5Vom/GKdJGgII\nIFAosIZ611b8PugvVf5KoZVbgM+Tcj+/HB0CCBQIuHjmcqkCILoQQAABBGoS4POkJiYWQgAB\nBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA\nAQQQQAABBBBAAAEEGhTgNnYNwrEaAgh0EThQUx9Q/OeV/9WlZ8m8sZr3PsW34PK3yOcqvkc2\nrRwCG+kw1lP8J9TdXloyKM2/fs2+TdlP8R9E8q0pfYwvK/U0/3GlMcr6yuuK/8BSUfOfX/af\nn34lS96y+2rmBxVveyDf3jNv35mHAAIIIIBA2wq4aJqvuCB+f6Lgad/vOv2DMr6fLa08AhN1\nKOE5Pqs8h9V5JC5ib4+OLxznDxo4zsuj7ZxUsP7m6rtPeSNa3r+YvltJ2zjN8D65GPe952kI\nIIAAAggg0AIC39E++gN8qhL/r9bqmn416wtFh4f+gzK0cgmUuYA+X09V/PoN45+s8yn8gJaP\nC+JKBfQuWi78QhoeKwx91vqI5HH9M+efPS/zzaSPSQQQQAABBBAYgALra58WKv7wPl2J206a\nCB/8Hh6prKO8VaGVS6DMBfSNeqrC6/gvGt9E8Wt4ZaWWtowWCn95NGzHw0oF9K3qC8u5MPYv\nqP+I5vkX0GWVuJ2mCa/jy0rCZTRxP+MIIIAAAgggMIAEfqp9CR/2Lizi9jFNhL55GnchQSun\nQJkL6Ml6ysLr+At1Pn27avn7o/XDdjzMK6B9fXVYZpHGt1Lc/L85Lyqh73DPjJp/9kLfhdF8\nRhFAoI8E+PPCfQTLZhFoA4FROkYXyW6TlMc6xzo61tLwUMVflorbCdnE9Ro+ovisnL+M5fZj\n5e3KRxX/N7WX+VM2rkFn89lrb9fXh45Q/JgPKdcqC5S4uVgPj+f5FyguQsYpOysuRnw28TeK\nH89fEttP2V1ZU7lTuUF5XKmnraiFj1B8hnI95RXlaeVW5TrFj5XXvKwtN1J8ffjLite7Sfmd\n4uIotL46tqP0AP4SqNvPlfnK3soeiuffo1ypPKvU2wZrhQ8o2ypvUf6tPKBMUHysea1Ry7xt\nhXm2e4/yXsWv37mKX0O3Kd6fuPn6/Q2U1aKZ79L4Scrzil+zRc0/B7dGC7ygcT++j6tS82sn\nNL8GH8wmntPQz4l/Zty83OWdY0v+eUwD/zxsqniZbys+U01DAAEEEEAAgQEm8Cntjws759xo\n38ZE80N/PPxotuysaLlPazz+suEzmh6SLefBYYqLz3g7YdzFw85K3IZqIvR76MLN/x0ez/O4\nC8IVsmHa5+JqM6XWtq8WnK2k2wnT96rP+5U2H3ulY/O645Vlo5X66tj8y0LY1/do3AVzmA7D\n6Zq3i5K2iZoRljkr6Ryt6b9E/WE5D/+pbKGkrVHLdDvxtH/p+qsSP34Yf0PzL1CWV0K7XiOh\nPx3+OyxUMPQdZ8J692l8Q8VFbph3osbT5l8oQv//JJ2fi/ryHt8/g2Hd45N1mUQAAQQQQACB\nASJwtfYjfGC7mA6tkQLaZ5DDtjz8btiYhh9S0gLTBU+8vKf3UEJLi8ywfRfRPrMarzsnm/a1\n3LOSvic07bOG1ZrPNvqsZNiuC83fK/cr8b5+TdNx20ETi5Sw3isaf1gJ+xTmn6Z5ofXVscUF\n9HN6MD+2f6mZl42HfbGfi8O4VSqgh2mhyUpY18OnlfiYvb01ldAatQzr5w1X0Mx4H70f8fMS\n9u/Pmu//jXDrjQLaZ7U/pvg5c6tWQMe/tJyzZJX//PthjYX99LXOaYt/ob0m7WQaAQQQQAAB\nBAaGgM/Qhg/090a7tJzG/d/0X4r6XZh6nhP+CzstVn+lvgMVn0l7p+LmAjM+M32DpjdRXJDs\novjsc9gHF2rDFbe0yHxV8/bs7Fny+HGx6PVvVFZSXPB9XQnb9NCXllRrh2qBsI63Fbe9NeG+\nacq1yggltIs0EorJmzUezoB6/+9WwjZ93KH11bGlJt/RA3p/XFB+UAm/hHiffqTELS5O4zPQ\n8WvAl34coPgXkk0VXzYRju9CjYfWqGVYP294nWaGx3pR40cqLqpHKn6+w3PgZY5V3NZR/Hqd\nqYR1T8vmjdawWguFeLxctQLar5HwWF+OV9S4fzZCn4d+vcbtfZoI/XM1nvf48fKMI4AAAggg\ngEA/C7xJjxc+rD3cPOfxj4qWmZHTHxfQT6rfhXfaxmtGeJwpGh+WLPA2Tcdnp4/J+tMi87xk\nve9pOmzXxdObo34XTqHPw92ivkqjn1BHWMcF2unKlkooYtJiR13/af6FYkfFjxs3F1Bhm/dE\nHX11bHEB7Wtvw76Hh/5mtD8+axy3SgX0VC0UjuEH8Qoajwu+lzUdfvnpiWXyEJ2Tm+jfsA8e\nhgI5XvaKaJkZcYfG42M4Jumrd7JaAW2HsK9fSDa+b9TnZTZK+v16C+t6uGrSzyQCCPSigM8E\n0BBAAIF6BdZMVnCR0ZP2O638Ss4Gdo/mXa5xX2YRt0c0cWc0Y6toPB69N57Q+AvR9FMa95m/\n0OaEkWyYFu1Jd+fkbfrXhbybz2yeqbgI9S8JLs5cLI5Q8poL7olZx8Ea+gy8zz5/NZvnQdE+\n9MWx+flwERY3X58b2ps0kl7GEfrC0AXxumFCw+cUF4EhQzT+muLmX57CLzE9sezcWPLPbtH0\nGxr/cTQdRuMz6j4un5luRvOZ49CWDSPZMJ2enfSnP4NrJP1MIoBALwpQQPciJptCoI0E4gLD\nBWBckDbC8GTOSoM1b61o/hPReDzqM6ehbRZGkmG6f6Fw82K+djlur8YTNY778pGjFRdocVtd\nE4coPpPuZT6hpG0/zfC1stOVXyknK+9SBimhLQojOcO+OLYZOY8T/5Lh7g1ylolnvUUT8TGc\npunfR3FB7rPpoYViuyeWYVvxMBTmnmfjvOc3fg15uUqvI/f1ZXs62nj6PzLxtM9Up69bF98v\nReuvHI0zigACvSzgMwA0BBBAoF6B+Gxxb7yP+PratLkY9aUC4ZrpMEyXiy+P8FnOvBYXzO6P\nz67mFVR526g27zItcKtyrDJO2VSJm4vpSxX/InBL1nGEhv+r+JcFt4eVPym3KpsrX1fcigro\nvjg272vaVkhmxGdLk67OydT1Ls3181mpxc9JI5aVthsXmrW8hrydSq+jSo/RW/OfiTa0WjTu\n0fg5mZn05U3m/RKUtxzzEECgAYHe+OBr4GFZBQEEWlxgVrT/y2vclyfMi+bVO5pemhHWn6KR\nLbKJ7cLMaOjCc+to2gVoM9uTevBTlS8q6yi7Kx9QDlS8r4Oy6VBAfymbr0HH95XPeSRr4bg9\n6V8m+rNtlfNgG0fzXNCnZ22j7s7RKfrXRbGP2e1y5YedY7X9U69lpa1OiTpW0fhGis9yx23b\naMKF/2PRdH+OToseLD0LHv9CNjVaLoz689yX1rj5DHXeMp2d/IMAAj0X4BKOnhuyBQTaUcBn\n6MI1vz7+9Jroek3ibcXrXh1N+FKIHaJpj56grO8RNRdrf+wc6/9/ztJD3qnY5bfZw/sM4Hjl\nIOXmbJ4HQ7Nxn1HcJBv34Lpo3KNjo+n+Ptnhgv8d0eP7s+L4aNrXni+MpvNG/b8Uf4s6/PzF\n7UOacCF7reIz7Ssobo1YLlkz/1+/JuJLG87TdHgOvMZI5cseydpNGqZn9UNfXw9/ET2An/8t\ns+mVNIz9fhYtF0bjM9b/1sz4jH5YhiECCPSSQH+/KffSbrMZBBBosoALjPuU7bP9WEvDf2Xj\njQwqfdhfrI25cHChOVi5Rfmp4sJrR8WXSoTmZf3lu2a0F/Wg3h+3AxQXadcoLiJ3VXZTQrst\nG5mr4cuKz+C7fUUJlxt8UuP7eGbWQnEZpvt6aGvv54XKdOXDyh5KaN7XWto3tNBvsgVdEF6i\nuEjcWDlDWUfZUPHxzVfcGrFcsmb+vy6eT1POz7r9y8Ffld8qPmP7MWVdxc3LfrZzrDn//FkP\n+w9lc2WQ4l8gf628Wwl31fD//vxcSVt8xrpZZ9DTfWIaAQQQQAABBBKBb2p6cZaTkj5PHpX1\neZm86zFdCIT1j9B4pbamOh5WwrJ5QxceK0YbGJos7wIkbl/RRNjOPXGHxn22NfR5uHfSnze5\nnGbeoMTr5Y1P0DIujEJzUZe3nOc9FfW5EA9FdF8d2+PR4z0Ujaf75zPGaZuoGWG5s6JOH+tF\nUV9YJh7OVP9bo3UatYw2kTv6Oc1dpMSPHY+7gPcvCmmbqhlhuWPSzjqnJ0XbOrHCun69uZAP\njxkPvf/HVljvhGidr1VYhtkIINBLAv6goCGAAAKNCPwpWmn3aLy3R5/RBndTLlb+T3FBEZrP\njh6n7Kn4zGWzmgtcn9n8ouJ9StuzmnGy8hEl3n8vf4ESX8LysqZ95tdF5ZOK2zBlXOdY//zj\nM8UfVGZHD+eizsVxPfvhYz1eOVLxWVEXgKG9oRGfXd1FeTTM1LBRy2gTuaPf01z7X6+8EC2x\nUON/VLZUrozmN2vU+7KjEn6JCfvxtEber/wwzEiG20XTf4jGGUUAAQQQQACBASTgs4vhrKUL\nksH9tG+r6nFcYKzeT49X78P4xIQvCdg+y1oa2qqojVDntsoWypCiBfuwLzyXLnrDZQze702V\nrZTeeH7fpO3YZWtlJaVaa8Sy2jbd7+36mN6uNMtbD121rawl/AvGm6ss6eN5TvFz15NLqao8\nDN0IIIAAAggg0BsCX9RG/KHtuDCita5AXgHdukfTXnvun73wc3haex06R4tAcwT8WysNAQQQ\naFTgUq0YLp34WKMbYT0EEOiRwEeztZ/X0Jc60RBAAAEEEEBggAucov3z2S9fxhF/kW+A7za7\nlwhwBjoBaZFJ/8z5Z88/g//VIvvMbiKAAAIIIND2Av6C22TFH+AntL1G6wL8TLt+Y5YDW/cw\n2m7PT9QR+2fPP4PLtt3Rc8AINEmg2hdbmrRbPCwCCLSYgIto317Nd5N4pcX2nd1FoJUFfNs/\nfxHyNcV3FKEhgAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIDAwBIYNLB2p1/2ZhU9ykrKMGW+8rzykkJDAAEEEEAAAQQQQACBTGBrDS9VZimLczJZ\n8y5RRio0BBBAAAEEEEAAAQTaWuB0HX0omp/U+ETlOuWXyvXK3cpMxcs8pxyq0BBAAAEEEEAA\nAQQQaEuBg3XULoxdKL+zQMCXsoxV7lW8/I4KDQEEEEAAAQQQQACBthMYryP25Rm+3rmW5uuj\n5yk/rGVhlkEAAQQQQAABBBBoP4FlSn7IW+r47lIW1nicc7XcQ8q6NS7PYggggAACCCCAAAJt\nJlD2AtrXNm+jDK3xefUZaBfdk2pcnsUQQAABBBBAAAEEECiVwGE6Gl/TfK0ypuDIfA30Loq/\nUPi6spNCQwABBBBAAAEEEECg7QRcGJ+o+D7PLqSnKX9Vfq/8Ihv6Eo8ZivtfU45XaAgggAAC\nCCCAAAIItLXAhjp6F8zTFRfKcVxc/0s5V1lPoSGAAAIIIIAAAgggUFHAZ2jbrY3QAfsvES6n\n+A+rvKDQEEAAAQQQQAABBBBAoEaBYVpuE2VwjcuzGAIIIIAAAggggAACpRfYQEd4rPJ+ZYXs\naNfW8DfKi4ov6fClHOcotd6xQ4vSEEAAAQQQQAABBBAon4C/RBhf8/yEpkcqV2bzfe/nPyjh\ni4SeT0MAAQQQQAABBBBAoC0F9tFRL1L+oRynnKTMVh5VXFT/t7K84uZroi9XPH9vhYYAAggg\ngAACCCCAQNsJXKIj9iUab4qOfJzGXSRPVdLrnl1MP6tcqNAQQAABBBBAAAEEEOgmUPa/ROg/\nnnKD4uubQ/uTRl5RrlPeCDOz4csa+q8QbpzMZxIBBBBAAAEEEEAAgU6BshfQvr7ZRXR8nAs0\n/WXlESVtK2vGdoqvh6YhgAACCCCAAAIIINBNYEi3OeWa8UcdzteV85VvKE8rbuctGXT513ff\n+Jri29r9uUtP/RNraZUfK8vWuKqX8x9x2VDx5SU0BBBAAAEEEEAAgQEqUPY/pOIvBt6pvFNZ\nqKyt+Kx02g7SjB8oayi3KHsqPSlkfas83/2j1gJ6XS37ccXF+6sKDQEEEEAAAQQQQACBpgn4\ni4FnK/cU7MHh6nNhfZHioru/2w56QBfstRbc/b1/PB4CCCCAAAIIIIAAAl0EXGSnd+ToskAf\nT1BA9zEwm0cAAQQQQAABBHpLoOzXQNfq5Ltv0BBAAAEEEEAAAQQQqCoQ352i6sIsgAACCCCA\nAAIIIIBAuwtQQHd9BXxakw8qx3adzRQCCCCAAAIIIIAAAksEKKC7vhLW1OSWioc0BBBAAAEE\nEEAAAQQQqCLQrAKaLxFWeWLoRgABBBBAAAEEBooAXyLs+kw8o0mHhgACCCCAAAIIIIBArkA7\nFtCrSGIlxX+0ZL7yvPKSQkMAAQQQQAABBBBAAIFMYGsNL1VmKf6DJWkma94lykilGY1LOJqh\nzmMigAACCCCAAAII5AqcrrmhYH5S4xOV65RfKtcrdyszFS/znHKo0t+NArq/xXk8BBBAAAEE\nEEAAgVyBgzXXhbEL5XfmLrFk5iANxir3Kl5+R6U/GwV0f2rzWAgggAACCCCAAAIVBcarx5dn\n+HrnWpqvj56n/LCWhXtxGQroXsRkUwgggAACCCCAQF8KlP0+0L6n813KwhoR52q5h5R1a1ye\nxRBAAAEEEEAAAQTaTKDsBbSvbd5GGVrj8+oz0C66J9W4PIshgAACCCCAAAIIIFAqgcN0NL6m\n+VplTMGR+RroXRR/ofB1ZSelPxuXcPSnNo+FAAIIIIAAAgj0QKDs94G+QjZrKGcr+yvTlWnK\nbMXXOo9QVlVGK2srLp5PVu5UaAgggAACCCCAAAIItK3AhjryXyguoH1GOo7/iMq/lHOV9ZRm\nNM5AN0Odx0QAAQQQQAABBBCoScBnnV0ob6z4LxIOhEYBPRCeBfYBAQQQQAABBBCoQaDsl3Dk\nEfjSDYeGAAIIIIAAAggggEDdAmW/C0fdIKyAAAIIIIAAAggggECRAAV0kQ59CCCAAAIIIIAA\nAggkAhTQCQiTCCCAAAIIIIAAAggUCVBAF+nQhwACCCCAAAIIIIBAIkABnYAwiQACCCCAAAII\nIIBAkQAFdJEOfQgggAACCCCAAAIIJAIU0AkIkwgggAACCCCAAAIIFAlQQBfp0IcAAggggAAC\nCCCAQCJAAZ2AMIkAAggggAACCCCAQJEABXSRDn0IIIAAAggggAACCCQCFNAJCJMIIIAAAggg\ngAACCBQJUEAX6dCHAAIIIIAAAggggEAiQAGdgDCJAAIIIIAAAggggECRAAV0kQ59CCCAAAII\nIIAAAggkAhTQCQiTCCCAAAIIIIAAAggUCVBAF+nQhwACCCCAAAIIIIBAIkABnYAwiQACCCCA\nAAIIIIBAkQAFdJEOfQgggAACCCCAAAIIJAIU0AkIkwgggAACCCCAAAIIFAlQQBfp0IcAAggg\ngAACCCCAQCJAAZ2AMIkAAggggAACCCCAQJEABXSRDn0IIIAAAggggAACCCQCFNAJCJMIIIAA\nAggggAACCBQJUEAX6dCHAAIIIIAAAggggEAiQAGdgDCJAAIIIIAAAggggECRAAV0kQ59CCCA\nAAIIIIAAAggkAhTQCQiTCCCAAAIIIIAAAggUCVBAF+nQhwACCCCAAAIIIIBAIkABnYAwiQAC\nCCCAAAIIIIBAkQAFdJEOfQgggAACCCCAAAIIJAIU0AkIkwgggAACCCCAAAIIFAlQQBfp0IcA\nAggggAACCCCAQCJAAZ2AMIkAAggggAACCCCAQJEABXSRDn0IIIAAAggggAACCCQCFNAJCJMI\nIIAAAggggAACCBQJUEAX6dCHAAIIIIAAAggggEAiQAGdgDCJAAIIIIAAAggggECRwJCizjbo\nG61jfKsyS3lUeVmhIYAAAggggAACCCDQtgKf0pFfoSyfCGyh6XuVxVGe1/gpymClv9sOekDv\ny7L9/cA8HgIIIIAAAggggAACscCPNeHCdKVo5noad7Hs+S6if6i4yJ6meN75Sn83Cuj+Fufx\nEEAAAQQQQAABBHIF8gro8VrShfLnkjWGazr0vTvp6+tJCui+Fmb7CCCAAAIIIIBALwm045cI\nd5TdPcr3EsMFmj5ama3skfQxiQACCCCAAAIIIIBAp0A7FtAjdOQPV3j+/SXCScrmFfqZjQAC\nCCCAAAIIINDmAu1YQP9Nz7m/RJjXVtPM7ZSZeZ3MQwABBBBAAAEEEECgXW5j50s27lNcPE9U\nTlMOUK5VQhulkW8qvhPGbWEmQwQQaCuBfToGdfxaR9yMu/H0P/Tizve8M/v/gXlEBBBAoLUF\nyl5A/0FPz8rKO5RDs2jQ2XwNdCig36fxCYo9XGD/QqEhgED7Cbx50HIdyw7ff5B/kS51W3jP\n4o7Xp3RsUOqD5OAQQACBPhIoewH9G7k5br6VnQvpkEGemTWfbfL1zy6cT1R8lw4aAgi0n8Bi\nnXt+Y+gm8dtDORFencTbXDmfWY4KAQT6Q6DsBXRs+IImbssSz/f4jYqvf37NEzQEEEAAAQQQ\nQAABBCoJtNuXCCsdr88+u3j2mehVlOUUGgIIIIAAAggggAAC3QQqFZTdFmzhGWtq369U5ijz\nlFuUnZS85rtzeLlT8jqZhwACCCCAAAIIIIBA2QvoFfQU+891f0jx2eVpyq7K7co5Cg0BBBBA\nAAEEEEAAgboEyl5Af0Ea6ylnKm9WNlV8n+d/KF9SzldoCCCAAAIIIIAAAgjULFD2Atp/tnuW\ncrbyYqbie0GPVe5QfMcNF9k0BBBAAAEEEEAAAQRqEih7Ab2uFFwov55o+I4c+ykPKf7jKb7E\ng4YAAggggAACCCCAQFWBshfQT0rg3UreXTX8hcJ9FV8XfZlS6YuF6qIhgAACCCCAAAIIILBE\nYEjJIW7W8e2jfE05V5mhxG26Jt6j+Cy1/2rht5TeaGtoIxcrtf41s5V740HZBgIIIIAAAggg\ngEDfC5S9gPaf6/644mudj1cOU36pxO1RTeyl+PZ2Z2cdg7Jho4NXtOJjSq0F9NqNPhDrIYAA\nAggggAACCPSvQNkLaBeyYxTfsu4A5VUlrz2gmdsqLrh9xrqnzZeHfLGOjeygZQ+pY3kWRQAB\nBBBAAAEEEGiSQNkLaLPOV3z22Sm65nuy+t+r+DZ3LrxpCCCAAAIIIIAAAgh0E2iHAjo+6EXx\nRIVx/+EVGgIIIIAAAggggAACuQJFZ2RzV2AmAggggAACCCCAAALtLEAB3fXZ/7QmH1SO7Tqb\nKQQQQAABBBBAAAEElghQQHd9JaypyS0VD2kIIIAAAggggAACCHQTaLdroLsBJDN87+arlWeS\n+UwigAACCCCAAAIIINApQAHd9YXgwpniuasJUwgggAACCCCAAAKRQDsW0Kvo+FdShim+xd3z\nyksKDQEEEEAAAQQQQACBqgLtcg301pK4VJmlzFGeUCYp0xQX0b4H9CXKSIWGAAIIIIAAAggg\ngEBFgXY4A326jv7MTOApDe9SXES7cPaZ6FWVUcoxykHKccoVCg0BBBBAAAEEEEAAgW4CZS+g\nD9YRu3i+QTlVuV/Ja4M0cxflPGW8MkWZqNAQQAABBBBAAAEEEOgiUPZLOMbpaB9XPKxUPBtk\nsXK7spfyonK4QkMAAQQQQAABBBBAoJtA2QvoLXXEvmRjYbcjz58xV7MfUtbN72YuAggggAAC\nCCCAQLsLlL2AnqkneBtlaI1PtO/Q4aLbXzCkIYAAAggggAACCCDQTaDsBfRlOuJNlauUMd2O\nfumMcA20r5UerkxY2sUYAggggAACCCCAAAJLBcr+JULfTWMN5Wxlf2W6Mk2ZrcxTRii+C8do\nZW3ldeVk5U6FhgACCCCAAAIIIIBAN4GyF9D+cuAFyjXKOcpYJT0TvUDzZii+A8dFylSFhgAC\nCCCAAAIIIIBArkDZC+hw0L4TxyHZhM86+/7Pyyn+wyovKDQEEEAAAQQQQAABBGoSaJcCOsbw\npRsODQEEEEAAAQQQQACBugXK/iXCukFYAQEEEEAAAQQQQACBIgEK6CId+hBAAAEEEEAAAQQQ\nSAQooBMQJhFAAAEEEEAAAQQQKBKggC7SoQ8BBBBAAAEEEEAAgUSAAjoBYRIBBBBAAAEEEEAA\ngSIBCugiHfoQQAABBBBAAAEEEEgEKKATECYRQAABBBBAAAEEECgSoIAu0qEPAQQQQAABBBBA\nAIFEgAI6AWESAQQQQAABBBBAAIEiAQroIh36EEAAAQQQQAABBBBIBCigExAmEUAAAQQQQAAB\nBBAoEqCALtKhDwEEEEAAAQQQQACBRIACOgFhEgEEEEAAAQQQQACBIgEK6CId+hBAAAEEEEAA\nAQQQSAQooBMQJhFAAAEEEEAAAQQQKBKggC7SoQ8BBBBAAAEEEEAAgUSAAjoBYRIBBBBAAAEE\nEEAAgSIBCugiHfoQQAABBBBAAAEEEEgEKKATECYRQAABBBBAAAEEECgSoIAu0qEPAQQQQAAB\nBBBAAIFEgAI6AWESAQQQQAABBBBAAIEiAQroIh36EEAAAQQQQAABBBBIBCigExAmEUAAAQQQ\nQAABBBAoEqCALtKhDwEEEEAAAQQQQACBRIACOgFhEgEEEEAAAQQQQACBIgEK6CId+hBAAAEE\nEEAAAQQQSAQooBMQJhFAAAEEEEAAAQQQKBKggC7SoQ8BBBBAAAEEEEAAgUSAAjoBYRIBBBBA\nAAEEEEAAgSIBCugiHfoQQAABBBBAAAEEEEgEKKATECYRQAABBBBAAAEEECgSoIAu0qEPAQQQ\nQAABBBBAAIFEgAI6AWESAQQQQAABBBBAAIEigSFFnfQhgAACCJRTYPHizuMapn9XL+cRdjmq\nRZqa02UOEwgggEAPBCige4DHqggggECrCiya0bnnH9G/Tju0D+kgf90OB8oxIoBA3wtQQPe9\nMY+AAAIIDDiBxTonO2STjo7ldx804Patt3do/s8WL1y8oGNEb2+X7SGAQPsKUEC373PPkSOA\nQJsLDFquo2PwyPIX0B3L+NcFGgIIINB7Au1YQK8ivpUUX/s3X3leeUmhIYAAAggggAACCCBQ\nVaBd7sKxtSQuVWYp/iLJE8okZZriInqycokyUqEhgAACCCCAAAIIIFBRoB3OQJ+uoz8zE3hK\nw7sUF9EunH0melVllHKMcpBynHKFQkMAAQQQQAABBBBAoJtA2Qvog3XELp5vUE5V7lfymi8C\n3EU5TxmvTFEmKjQEEEAAAQQQQAABBLoIlP0SjnE62scVDysVzwbxHVFvV/ZSXlQOV2gIIIAA\nAggggAACCHQTKPsZ6C11xL5kY2G3I8+fMVezH1LWze9mLgJtKeD3CV/itHwbHP27dIyD2+A4\nOUQEEEAAgR4IlL2AnimbbZShyms1OPkOHS66/YVCGgIILBHYSIPvL7Naxysdy3T+b01pXRbN\n03vFIB0lDQEEEEAAgQKBshfQl+nYf65cpZyj3K3kNV8DvbNyrjJcmaDQEEAgEljhY4OWW2YF\n/6iUt710zaKO16eU+5eE8j57HBkCCCDQfwJlL6B9N401lLOV/ZXpyjRltjJPGaH4LhyjlbWV\n15WTlTsVGgIIIIAAAggggAAC3QTKXkD7y4EXKNcoPgM9VhmjxG2BJmYovgPHRcpUhYYAAggg\ngAACCCCAQK5A2QvocNC+E8ch2YTPOvv+z/ojtp1/WOWFbD4DBBBAAAEEEEAAAQSqCrRLAR0g\n/OUgX7rh5DV/+94F9svKK3kLMA8BBBBAAAEEEECgvQXa4dvma+opvlKZo7hwvkXZSclrW2im\nlzslr5N5CCCAAAIIIIAAAgiUvYBeQU/xvcqHFJ9d9hcId1VuV3xNNA0BBBBAAAEEEEAAgboE\nyl5Af0Ea6ylnKm9WNlW2U/6hfEk5X6EhgAACCCCAAAIIIFCzQNkL6B0lMUs5W/Gf6Hb7m+K7\ncdyhnKi4yKYhgAACCCCAAAIIIFCTQNkLaP9JbhfKvr9z3Hznjf2Uh5RvKr7Eg4YAAggggAAC\nCCCAQFWBshfQT0rg3YpvWZc2f6FwX8XXRV+mVPpiobpoCCCAAAIIIIAAAggsERhScoibdXz7\nKF9T/Ge6/QdT4ua/TPgexWep/6B8S+mNtro24j/gsmyNG1utxuVYDAEEEEAAAQQQQKDJAmU/\nA/09+f6f4mudpyofUdL2qGbspSxSfK2026Alg4b/9SUj/nPhtYY/5tIwNSsigAACCCCAAAL9\nK1D2M9D+Yyj+092+Zd0ByqtKXntAM7dVXHD7jHVP2/PawAl1bGQHLfuBOpZnUQQQQAABBBBA\nAIEmCZS9gDbrfOX4LEVn3Cdrmfcqvs0df4VQCDQEEEAAAQQQQACB7gLtUEDHR+3LNKo1/+EV\nGgIIIIAAAggggAACuQJFZ2RzV2AmAggggAACCCCAAALtLEAB3fXZ/7QmH1SO7TqbKQQQQAAB\nBBBAAAEElghQQHd9JaypyS0VD2kIIIAAAggggAACCHQTaLdroLsBJDMu1vTVyjPJfCYRQAAB\nBBBAAAEEEOgUoIDu+kJw4Uzx3NWEKQQQQAABBBBAAIFIoB0L6FV0/CspwxTf4s73bH5JoSGA\nAAIIIIAAAgggUFWgXa6B3loSlyqzlDnKE8okZZriItr3gL5EGanQEEAAAQQQQAABBBCoKNAO\nZ6BP16/0mMQAAEAASURBVNGfmQk8peFdiotoF84+E72qMko5RjlIOU65QqEhgAACCCCAAAII\nINBNoOwF9ME6YhfPNyinKvcreW2QZu6inKeMV6YoExUaAggggAACCCCAAAJdBMp+Ccc4He3j\nioeVimeDLFZuV/ZSXlQOV2gIIIAAAggggAACCHQTKHsBvaWO2JdsLOx25Pkz5mr2Q8q6+d3M\nRQABBBBAAAEEEGh3gbIX0DP1BG+jDK3xifYdOlx0+wuGNAQQQAABBBBAAAEEugmUvYC+TEe8\nqXKVMqbb0S+dEa6B9rXSw5UJS7sYQwABBBBAAAEEEEBgqUDZv0Tou2msoZyt7K9MV6Yps5V5\nygjFd+EYraytvK6crNyp0BBAAAEEEEAAAQQQ6CZQ9gLaXw68QLlGOUcZq6Rnohdo3gzFd+C4\nSJmq0BBAAAEEEEAAAQQQyBUoewEdDtp34jgkm/BZZ9//eTnFf1jlBYWGAAIIIIAAAggggEBN\nAu1SQMcYvnTDoSGAAAIIIIAAAgggULdA2b9EWDcIKyCAAAIIIIAAAgggUCRAAV2kQx8CCCCA\nAAIIIIAAAokABXQCwiQCCCCAAAIIIIAAAkUCFNBFOvQhgAACCCCAAAIIIJAIUEAnIEwigAAC\nCCCAAAIIIFAkQAFdpEMfAggggAACCCCAAAKJAAV0AsIkAggggAACCCCAAAJFAhTQRTr0IYAA\nAggggAACCCCQCFBAJyBMIoAAAggggAACCCBQJEABXaRDHwIIIIAAAggggAACiQAFdALCJAII\nIIAAAggggAACRQIU0EU69CGAAAIIIIAAAgggkAhQQCcgTCKAAAIIIIAAAgggUCRAAV2kQx8C\nCCCAAAIIIIAAAokABXQCwiQCCCCAAAIIIIAAAkUCFNBFOvQhgAACCCCAAAIIIJAIUEAnIEwi\ngAACCCCAAAIIIFAkQAFdpEMfAggggAACCCCAAAKJAAV0AsIkAggggAACCCCAAAJFAhTQRTr0\nIYAAAggggAACCCCQCFBAJyBMIoAAAggggAACCCBQJEABXaRDHwIIIIAAAggggAACiQAFdALC\nJAIIIIAAAggggAACRQL1FtDf1cYOVIYWbZQ+BBBAAAEEEEAAAQTKKlBvAb2vICYo05ULlXco\nNAQQQAABBBBAAAEE2kag3gJ6B8mcoExVjlf+rjygeN4aCg0BBBBAAAEEEEAAgVIL1FtAz5LG\nRco2yubKt5TVlQsUn5W+Rnm/wiUeQqAhgAACCCCAAAIIlE+g3gI6FvinJk5RRim7Kb4+envl\namWGcr6ysUJDAAEEEEAAAQQQQKA0Aj0poAPCRhoZq+yq+DKOxYrPVPuyjknK6QoNAQQQQAAB\nBBBAAIFSCDRaQI/U0X9euVt5TPmqslo2fIuGb1dcWP9OOVM5UqEhgAACCCCAAAIIINDyAvUW\n0AfpiH+v+BKN7yhbKOOVdysbKF9RHlfcnlA+1TnW0bFnNmSAAAIIIIAAAggggEBLCwypc++/\nreVdKP9V+YlypfKCUqm9ro4nlfsrLcB8BBBAAAEEEEAAAQRaSaDeAvp7Org/KL62uZY2Wwut\nX8uCLIMAAggggAACCCCAQCsI1HsJxwQd1LMFB+bt7aq8o2AZuhBAAAEEEEAAAQQQaFmBegvo\nm3Sknys42mHqu1U5pmAZuhBAAAEEEEAAAQQQaFmBapdw+D7OvkVdaCtq5J3KUWFGNHQxHs48\nz4nmM4oAAggggAACCCCAQGkEqhXQz+hIz1LWjo74AI07ldpL6vhtpU7mI4AAAggggAACCCDQ\nygLVCuh5Orj9lM2ygzxfwzuUvAJ5keYvUO5XnlJaoY3WTr5V8R9+eVR5WaEhgAACCCCAAAII\nIFBRoFoB7RVdEDtu2yq3K1d7ogWa70PtLzX6kpO4OPb9q3+s+HhC8+34vq6cq7wRZjJEAAEE\nEEAAAQQQQCAWqFZAr6KFhypzFN/T2ZdzDFb8J7uLmi/jcJrdxmgHDlE+rYQCej2N+yz6Ssp9\nyt+UEYqv9f6GsqZykkJDAAEEEEAAAQQQQKCbQLUC+hatsZWyneJi817Ff0ilWjtDC5xZbaEm\n9btIdvH8ecX3tQ5tuEZ+pJyo+F7XvuMIDQEEEEAAAQQQQACBLgLVCmgXkf9S5mZrXa9htbPP\nXvT/suUH4mBH7dQ9Slw8ez8XKEcreyt7KBTQQqAhgAACCCCAAAIIdBWoVkD/V9fFOz6bTLfi\npC/XuLnCjvsyD/+Vxc0r9DMbAQQQQAABBBBAoM0FfO/m3mguxH03i0G9sbE+3oavefaXCPPa\naprpy1Vm5nUyDwEEEEAAAQQQQACBRgrog8R2SUS3v8ZnKz5zO115rzLQmi/ZGK/4y4ETFd99\n4wAlbqM04cs6llVuizsYRwABBBBAAAEEEEAgCFS7hCMsF4bjNPIb5RXlWMWXQ/xMWVH5k7K9\n8gtlG2Wy0uzmLwOurPgvJB6aRYPO5mL52mz8fRpOUOzhAtvHQEMAAQQQQAABBBBAoJtAvQX0\nV7SFJxQX0ouVAxXf0eLbyn8rGyounN1/ntLs5mLfcfN+upAOiS838a35fP2zC2ffhcPHRkMA\nAQQQQAABBBBAoJtAPQW0L/fYVDlfeSjb0r7Z8Kps+LiGjyjvzKYH0sB/KMWXZuRdnnGj5vv6\n59cUGgIIIIAAAggggAACFQXqKaB9mcZyytPZ1nzWdi9ljuL7Q4fmZXwdcSs1n32mIYAAAggg\ngAACCCBQVaCeLxH6DK6L5V2yrb5Hw1WUG5RF2bytNdxA8ZloGgIIIIAAAggggAACpROop4D2\nwf9cOVi5NRv3tcL/o7idpvxFcTH9U4WGAAIIIIAAAggggEDpBOq5hMMHf4ris84uol9UPq+E\na4p31fgg5QjF10EPhPZJ7YTvFFJv85047qp3JZZHAAEEEEAAAQQQKL9AvQW0b193uHK04i/c\nxXer8D2Wn1BcWA+U9hntiO+6UW87QytQQNerxvIIIIAAAggggEAbCNRbQAeSV8NINAx35ohm\nNX3Uf9TlamUH5Rrlx0ot7dFaFmIZBBBAAAEEEEAAgfYTaKSA3kNMH1PWUJZXfNlG2n6qGZel\nM5sw7TuG7K7cpriYPlP5u0JDAAEEEEAAAQQQQKAhgXoL6A/pUa6s4ZFcsA6UtlA7cpRyv/Jd\nZWelr9uqeoBvKLXezm9kX+8Q20cAAQQQQAABBBDoHYF678Jxlh72JeUwZR3FBXhefKZ3ILV/\name+pPgLhVsMpB1jXxBAAAEEEEAAAQRaS6CeM9Bv0qFtrFyiXNFah9m5t+fpX6c/2hw9yDF1\nPJCv0Q5/1bGO1VgUAQQQQAABBBBAoL8F6jkD7b/WN0/xGWgaAggggAACCCCAAAJtKVBPAe0/\nkOJrmw9R6lmvLWE5aAQQQAABBBBAAIFyCtRbCPsPkyxQfqOMVUYpq+XEd+egIYAAAggggAAC\nCCBQOoF6C+hrJeDb171f8dnoJ5XncuK/WNiK7dPa6QeVY1tx59lnBBBAAAEEEEAAgb4XqOdL\nhN4b30N5Rg27NVD+lHcNu9plkTU1taXiIQ0BBBBAAAEEEEAAgW4C9RbQPkNb5naxDu5q5Zky\nHyTHhgACCCCAAAIIINC4QL0FdPxIvs75Lcpw5W7Ft7lr9Tt0uHCmeBYCDQEEEEAAAQQQQCBf\noN5roL0Vf3HwV4qL5YeUcxW3nytnK8M8MYDbKtq39ZW3KusqLvxpCCCAAAIIIIAAAgjUJFBv\nAb22tnq/crAySfGXCEMbpJFTlb8py4WZA2S4tfbjUmWW4j9y8oTi/Z+mzFcmK/4DMSMVGgII\nIIAAAggggAACFQXqLaC/oy350o1dlM0UF9OhHaSRc5S3K0eEmQNgeLr2wft5lPKycpfye+VK\n5QblHmW44r8c+IhyqEJDAAEEEEAAAQQQQCBXoN4Cek9t5fvKX3K29obmnam8oGyf09+MWT5T\n7n1yobyNMlrZUdlP+YjyXmWMso6yq+Iz0+MVL0NDAAEEEEAAAQQQQKCbQD0F9Ait7euHH+22\nlaUzXtPoPxUvNxDaOO3E44qH8dnydN8Wa8btyl7Ki8rhCg0BBBBAAAEEEEAAgW4C9RTQ87T2\n08p23baydIaLbF/CMWnprKaObalH9yUbC2vci7lazl+M9JcLaQgggAACCCCAAAIIdBOop4D2\nytcrRyufU1ZQ4rayJi5XVlJujDuaOD5Tj+1LN4bWuA8+c+6ie6D8AlDjbrMYAggggAACCCCA\nQH8J1FtAn6Qd818i/K4yXfG1whsqExTfyeJA5afKzcpAaJdpJzZVrlJ8rXOl5juI+IuRvlba\nXyj08dAQQAABBBBAAAEEEOgmMKTbnOIZz6v7ncrZyscVX7Lh5sJ5jnKc8gNloLQrtCNrKN7f\n/RUX/dOU2YovSfH+r6r4y4W+Rd/rysnKnQoNAQQQQAABBBBAAIFuAvUW0N7Ac8qxymcVF55r\nKVMUn5keaM1fDrxAuUY5RxmrpGeiF2ie9/085SJlqkJDAAEEEEAAAQQQQCBXoJECOmzIt63z\nHS6cgd68j4dkO+mzzr5O23/sZZbygkJDAAEEEEAAAQQQQKAmgUYKaF8SsZni4ZOKi9NnlVZp\nvnTDoSGAAAIIIIAAAgggULdArQW0//rg15WPKqvlPIrv/fwtxdcc+zpiGgIIIIAAAggggAAC\npRSopYDeWkfuwth3s/D9lG9RfM2wx30Hjo0U3/vZd7w4TPEXCl9RaAgggAACCCCAAAIIlE6g\nWgHt/quV9RUXyCcqc5W0jdUMfwFvL8W3uPukQkMAAQQQQAABBBBAoHQC1e4D7Us21ld+pxyl\n5BXPmt35Z7B30HCK8jFldYWGAAIIIIAAAggggEDpBKoV0HtnR+zi2XfdKGq+bMNnn4cpOxUt\nSB8CCCCAAAIIIIAAAq0qUK2A9pnkOUqtd9mYnEGs26og7DcCCCCAAAIIIIAAAkUC1Qpo33Fj\nftEGkj7/pT83LuFY4sC/CCCAAAIIIIAAAiUTqFZAu39RHcccbmE3qI51WBQBBBBAAAEEEEAA\ngZYRqFZAt8yBsKMIIIAAAggggAACCPSHQLXb2Hkf/KevT6hxZ7j2uUYoFkMAAQQQQAABBBBo\nTYFaCuhVdWgXtObhsdcIIIAAAggggAACCPSuQLUC2oXzyAYecmID67AKAggggAACCCCAAAID\nXqBaAe2/PkhDAAEEEEAAAQQQQACBTIAvEfJSQAABBBBAAAEEEECgDgEK6DqwWBQBBBBAAAEE\nEEAAAQpoXgMIIIAAAggggAACCNQhQAFdBxaLIoAAAggggAACCCBAAc1rAAEEEEAAAQQQQACB\nOgQooOvAYlEEEEAAAQQQQAABBCigeQ0ggAACCCCAAAIIIFCHAAV0HVgsigACCCCAAAIIIIAA\nBTSvAQQQQAABBBBAAAEE6hCggK4Di0URQAABBBBAAAEEEKCA5jWAAAIIIIAAAggggEAdAhTQ\ndWCxKAIIIIAAAggggAACFNC8BhBAAAEEEEAAAQQQqEOAAroOLBZFAAEEEEAAAQQQQIACmtcA\nAggggAACCCCAAAJ1CFBA14HFoggggAACCCCAAAIIUEDzGkAAAQQQQAABBBBAoA4BCug6sFgU\nAQQQQAABBBBAAAEKaF4DCCCAAAIIIIAAAgjUIUABXQcWiyKAAAIIIIAAAgggQAHNawABBBBA\nAAEEEEAAgToEKKDrwGJRBBBAAAEEEEAAAQSGQIAAAg0KDO74a8fijs0aXLt1VlvcMUjHSUMA\nAQQQQACBTIACmpcCAo0KLO7YdNi7OlYcvO6gRrfQEuu98fTijoV3tsSuspMI5AosfrVjaMeQ\njm/qV8HTchco08w3Ol7qWNQxVoc0u0yHxbEgMNAE2rGAXkVPwkrKMGW+8rzykkJDoG4BF8/L\nvq3cBfRrQ1VA1y3DCggMIIHFHYOHvq1jtSFvHrTaANqrXt8V/aLQ8crNnf9dtLo2TgHd68Js\nEIGlAu1SQG+tQ/6scoAycunh/2fscY3dpHxZefY/cxlBAAEEECiFwJBRgzqGbV3uX3YXzV+s\nAroUTxcHgcCAF2iHAvp0PQtnZs/EUxrepcxRfPbZZ6JXVUYpxygHKccpVyg0BBBAAAEEEEAA\nAQS6CZS9gD5YR+zi+QblVOV+Ja/5tMQuynnKeGWKMlGhIYAAAggggAACCCDQRaDst7Ebp6P1\n5RkeViqeDeKLxm5X9lJeVA5XaAgggAACCCCAAAIIdBMoewG9pY7Yl2zU+h2ouVr2IWVdhYYA\nAggggAACCCCAQDeBshfQM3XE2yhDux15/gzfocNF96T8buYigAACCCCAAAIItLtA2Qvoy/QE\nb6pcpYwpeLLDNdC+Vnq4MqFgWboQQAABBBBAAAEE2lig7F8i9N001lDOVvZXpivTFN8fc54y\nQvFdOEYrayuvKycr/NkIIdAQQAABBBBAAAEEuguUvYD2lwMvUK5RzlHGKumZ6AWaN0PxHTgu\nUqYqNAQQQAABBBBAAAEEcgXKXkCHg/adOA7JJnzW2fd/Xk6Zpbyg0BBAAAEEEEAAAQQQqEmg\nXQroGMOXbjg0BBBAAAEEEEAAAQTqFij7lwjrBmEFBBBAAAEEEEAAAQSKBCigi3ToQwABBBBA\nAAEEEEAgESj7JRyf1PH6mud6m/+Mt/8ACw0BBBBAAAEEEEAAgS4CZS+gP6OjfUeXI65t4gwt\nRgFdmxVLIYAAAggggAACbSVQ9gL6vXo2r1Z2UHwrux8rtbRHa1mIZRBAAAEEEEAAAQTaT6Ds\nBfTTekp3V25TXEyfqfxdoSGAAAIIIIAAAggg0JBA2QtooyxUjlLuV76r7Kz0dVtZD3CGsmyN\nD7RmjcuxGAIIIIAAAggggECTBdqhgDbxP5UvKUcoWygPK33Z7LqaUmsB7T/sQkMAAQQQQAAB\nBBBoAYF2KaD9VPhPdTv90Z7Tg3ysjgfyNdp71rE8iyKAAAIIIIAAAgg0SYD7QDcJnodFAAEE\nEEAAAQQQaE0BCujWfN7YawQQQAABBBBAAIEmCVBANwmeh0UAAQQQQAABBBBoTQEK6K7P26c1\n+aBybNfZTCGAAAIIIIAAAgggsESAArrrK8G3k9tS4bZyXV2YQgABBBBAAAEEEMgE2ukuHLU8\n6RdrIf/lwmdqWZhlEEAAAQQQQAABBNpPgAK663PuwpniuasJUwgggAACCCCAAAKRQDsW0Kvo\n+P2HS4Yp85XnlZcUGgIIIIAAAggggAACVQXa5RrorSVxqTJLmaM8oUxSpikuoicrlygjFRoC\nCCCAAAIIIIAAAhUF2uEM9Ok6+jMzgac0vEtxEe3C2WeiV1VGKccoBynHKVcoNAQQQAABBBBA\nAAEEugmUvYA+WEfs4vkG5VTlfiWvDdLMXRT/qe/xyhRlokJDAAEEEEAAAQQQQKCLQNkv4Rin\no31c8bBS8WyQxcrtyl7Ki8rhCg0BBBBAAAEEEEAAgW4CZS+gt9QR+5KNhd2OPH/GXM1+SFk3\nv5u5CCCAAAIIIIAAAu0uUPYCeqae4G2UoTU+0b5Dh4tuf8GQhgACCCCAAAIIIIBAN4GyF9CX\n6Yg3Va5SxnQ7+qUzwjXQvlZ6uDJhaRdjCCCAAAIIIIAAAggsFSj7lwh9N401lLOV/ZXpyjRl\ntjJPGaH4LhyjlbWV15WTlTsVGgIIIIAAAggggAAC3QTKXkD7y4EXKNco5yhjlfRM9ALNm6H4\nDhwXKVMVGgIIIIAAAggggAACuQJlL6DDQftOHIdkEz7r7Ps/L6f4D6u8oNAQQAABBBBAAAEE\nEKhJoF0K6BjDl244NAQQQAABBBBAAAEE6hYo+5cI6wZhBQQQQAABBBBAAAEEigQooIt06EMA\nAQQQQAABBBBAIBGggE5AmEQAAQQQQAABBBBAoEiAArpIhz4EEEAAAQQQQAABBBIBCugEhEkE\nEEAAAQQQQAABBIoEKKCLdOhDAAEEEEAAAQQQQCARoIBOQJhEAAEEEEAAAQQQQKBIgAK6SIc+\nBBBAAAEEEEAAAQQSAQroBIRJBBBAAAEEEEAAAQSKBCigi3ToQwABBBBAAAEEEEAgEaCATkCY\nRAABBBBAAAEEEECgSIACukiHPgQQQAABBBBAAAEEEgEK6ASESQQQQAABBBBAAAEEigQooIt0\n6EMAAQQQQAABBBBAIBGggE5AmEQAAQQQQAABBBBAoEiAArpIhz4EEEAAAQQQQAABBBIBCugE\nhEkEEEAAAQQQQAABBIoEKKCLdOhDAAEEEEAAAQQQQCARoIBOQJhEAAEEEEAAAQQQQKBIgAK6\nSIc+BBBAAAEEEEAAAQQSAQroBIRJBBBAAAEEEEAAAQSKBCigi3ToQwABBBBAAAEEEEAgEaCA\nTkCYRAABBBBAAAEEEECgSIACukiHPgQQQAABBBBAAAEEEgEK6ASESQQQQAABBBBAAAEEigQo\noIt06EMAAQQQQAABBBBAIBGggE5AmEQAAQQQQAABBBBAoEiAArpIhz4EEEAAAQQQQAABBBIB\nCugEhEkEEEAAAQQQQAABBIoEKKCLdOhDAAEEEEAAAQQQQCARoIBOQJhEAAEEEEAAAQQQQKBI\ngAK6SIc+BBBAAAEEEEAAAQQSAQroBIRJBBBAAAEEEEAAAQSKBCigi3ToQwABBBBAAAEEEEAg\nEaCATkCYRAABBBBAAAEEEECgSIACukiHPgQQQAABBBBAAAEEEgEK6ASESQQQQAABBBBAAAEE\nigSGFHW2Qd9oHeNblVnKo8rLCg0BBBBAAAEEEEAAgYoCZT8D/Skd+RXK8onAFpq+V5mi/FH5\nuzJTOUUZrNAQQAABBBBAAAEEEMgVKHsBPUZHfYiybHT062n8DmVb5T7lEuUXynzlG8q3FRoC\nCCCAAAIIIIAAArkC7XgJh4vklZTPK9+LVIZr/EfKicoflJsUGgIIIIAAAggggAACXQTKfga6\ny8FmEztqeI8SF8/uWqAcrcxW9lBoCCCAAAIIIIAAAgh0E2jHAnqEFB7uJrFkhr9EOEnZvEI/\nsxFAAAEEEEAAAQTaXKAdC+i/6Tn3lwjz2mqauZ3iLxTSEEAAAQQQQAABBBDoJtAuBbQv2Riv\nnKRMVPwFwgOUuI3ShC/r8BcOb4s7GEcAAQQQQAABBBBAIAiU/UuE/jLgyso7lEOzaNDZXCxf\nm42/T8MJij1cYPuuHDQEEEAAAQQQQAABBLoJlL2A/o2O2HHznTdcSIcM8sys+d7Pvv7ZhbPv\nwrFYoSGAAAIIIIAAAggg0E2g7AV0fMAvaMKXZuRdnnGj5vv659cUGgIIIIAAAggggAACFQXa\nqYAOCKtoxGejhynzleeVlxQaAggggAACCCCAAAJVBdrlS4RbS+JSZZYyR3lC8e3qpikuoicr\n/ouEIxUaAggggAACCCCAAAIVBdrhDPTpOvozM4GnNLxLcRHtwtlnoldVfAeOY5SDlOOUKxQa\nAggggAACCCCAAALdBMpeQB+sI3bxfINyqnK/ktcGaeYuynmKb3c3RfHdOGgIIIAAAggggAAC\nCHQRKPslHON0tI8rHlYqng3iu27cruylvKgcrtAQQAABBBBAAAEEEOgmUPYCeksdsS/ZWNjt\nyPNnzNXsh5R187uZiwACCCCAAAIIINDuAmUvoGfqCd5GGVrjE+07dLjo9hcMaQgggAACCCCA\nAAIIdBMo+zXQl+mIf65cpZyj3K3kNV8DvbNyrjJcmaD0pI3Qyl9Ulq1xI2vXuByLIYAAAggg\ngAACCDRZoOwFtO+msYZytrK/Ml2ZpsxW5ikudH0XjtGKi9jXlZOVO5WetOW08iZKPWe+e/J4\nrIsAAggggAACCCDQTwJlL6D95cALlGsUn4Eeq4xR4rZAEzMU34HjImWq0tPm+037lni1th20\n4MRaF2Y5BBBAAAEEEEAAgeYJlL2ADrK+E8ch2YTPOvv+zz5L7EL3BYWGAAIIIIAAAggggEBN\nAu1SQMcYvnTDoSGAAAIIIIAAAgggULdA2e/CUTcIKyCAAAIIIIAAAgggUCRAAd1V59OafFA5\ntutsphBAAAEEEEAAAQQQWCJAAd31lbCmJn0faA9pCCCAAAIIIIAAAgh0E2jHa6C7IUQzLtb4\n1coz0TxGEUAAAQQQQAABBBD4jwAF9H8oOkdcOFM8dzVhCgEEEEAAAQQQQCASaMcCehUdv29j\nN0yZrzyvvKTQEEAAAQQQQAABBBCoKtAu10BvLYlLFd/3eY7yhDJJmaa4iJ6sXKKMVGgIIIAA\nAggggAACCFQUaIcz0Kfr6M/MBJ7S8C7FRbQLZ5+J9p/yHqUco/ivBx6nXKHQEEAAAQQQQAAB\nBBDoJlD2AvpgHbGL5xuUU5X7lbw2SDN3UfznvMcrUxT+tLYQaAgggAACCCCAAAJdBcp+Ccc4\nHa7/jLeHlYpniyxWblf2Ul5UDldoCCCAAAIIIIAAAgh0Eyh7Ab2ljtiXbCzsduT5M+Zq9kPK\nuvndzEUAAQQQQAABBBBod4GyX8IxU0/wNspQ5bUanmzfocNFt79QSEMAAQQQQKBlBBYv9n+m\ndraT9O+cbLzMA/8P84/KfIAc28AVKHsBfZnof65cpZyj3K3kNV8DvbNyrjJcmaDQEEAAAQQQ\naBmBxQuW7OrgdTqO1Gmj/1TTLXMAdezo4pc6llk0p2NBxyIK6DrYWLQXBcpeQPtuGmsoZyv7\nK9OVacpsZZ4yQvFdOEYrayuvKycrdyo0BBBAAAEEWk5g+IGDlh28ms8Llbe9+sjijgW/LfXv\nCOV98kpyZGUvoP3TdYFyjeIz0GOVMUrc/Dv7DMV34LhImarQEEAAAQQQQAABBBDIFSh7AR0O\n2tdJHZJN+Kyz7/+8nOI/rPKCQkMAAQQQQAABBBBAoCaBdimgYwxfuuHQEEAAAQQQQAABBBCo\nW6Dst7GrG4QVEEAAAQQQQAABBBAoEmjHM9BFHvT1XGCUNvH2nm+mJbbAz09LPE3sJAIIIIAA\nAr0rQAHQu55sbVDHhbp50oEdy+jmQuVv/PyU/znmCBFAAAEEEOgmQAHQjYQZPRJYpmPosu/s\nWGb43suU/vKg57++yHd5Kfe9onr0YmBlBBBAAAEEyilQ+iKnnE8bR4UAAggggAACCCDQLAEK\n6GbJ87gIIIAAAggggAACLSlAAd2STxs7jQACCCCAAAIIINAsAQroZsnzuAgggAACCCCAAAIt\nKUAB3ZJPGzuNAAIIIIAAAggg0CwBCuhmyfO4CCCAAAIIIIAAAi0pQAHdkk8bO40AAggggAAC\nCCDQLAEK6GbJ87gIIIAAAggggAACLSlAAd2STxs7jQACCCCAAAIIINAsAQroZsnzuAgggAAC\nCCCAAAItKUAB3ZJPGzuNAAIIIIAAAggg0CwBCuhmyfO4CCCAAAIIIIAAAi0pQAHdkk8bO40A\nAggggAACCCDQLAEK6GbJ87gIIIAAAggggAACLSlAAd2STxs7jQACCCCAAAIIINAsAQroZsnz\nuAgggAACCCCAAAItKUAB3ZJPGzuNAAIIIIAAAggg0CwBCuhmyfO4CCCAAAIIIIAAAi0pQAHd\nkk8bO40AAggggAACCCDQLAEK6GbJ87gIIIAAAggggAACLSlAAd2STxs7jQACCCCAAAIIINAs\nAQroZsnzuAgggAACCCCAAAItKUAB3ZJPGzuNAAIIIIAAAggg0CwBCuhmyfO4CCCAAAIIIIAA\nAi0pQAHdkk8bO40AAggggAACCCDQLAEK6GbJ87gIIPD/27sXcDvGe4/jO3IVBIlEEpcgQt2C\nhNO6Jq5VqqVoS1tJj3KiPXU86PX0CEq12mr1ckof9MS1FK2ilKduJS4pdRdULhVBXJJoXCLJ\n3uf3y56X15i115qd7L1mzfr+n+eXNfPOrDXvfGattd81a7I3AggggAACCDSkAAPohjxsdBoB\nBBBAAAEEEECgXgIMoOslz3YRQAABBBBAAAEEGlKAAXRDHjY6jQACCCCAAAIIIFAvAQbQ9ZJn\nuwgggAACCCCAAAINKcAAuiEPG51GAAEEEEAAAQQQqJcAA+h6ybNdBBBAAAEEEEAAgYYUYADd\nkIeNTiOAAAIIIIAAAgjUS6BXvTZcx+2urW2vqfRVFikLlDcUCgEEEEAAAQQQQACBqgLNcgZ6\ne0mcr8xTXlNmKtOVOYoH0c8q5ymDFQoBBBBAAAEEEEAAgYoCzXAG+mTt/amJwD91e4/iQbQH\nzj4TPVDZUDlGOUQ5TrlMoRBAAAEEEEAAAQQQ+IBA2QfQh2mPPXi+Sflv5UElq3qocTflx8ql\nyixlqkIhgAACCCCAAAIIIPA+gbIPoA/S3s5QfLv4fXv+/pk2zd6p7KvMVo5UGEALgUIAAQQQ\nQKCQAv7J3f4tciG7t5I79boeb+lKfkwebgUEyj6AHi0bX7LR0eA55puvmUeU9eLGbpw+V9tq\n7cbtrfxNtbXYnEIAAQQQQKDLBJa9pNFz2/LLMF/tso0U64EvVnd8co8qiEDZB9AvyHms0ltZ\nUoO5f0OHB4D+D4XdWr230ebaWiZ060a7YGNLnmrx5TAUAggggAACXSbQ5p/ovVva1vhij9L/\nzHl7alvLkidb1m5Z1mWcPHAnBMo+gJ4ik0uUq5UzlPuUrPILcFflR0p/5Q9Kt1avDXq09B3T\no+F/K8rCn7b6DHrp39C69cnBxhBAAAEEPiignzQ9h5T/x02PVduvVfkgAC31FCj7ANq/TWOI\ncrpyoPK8MkfxVz6+nmiA4t/CMUIZpvj6ohOVuxUKAQQQQAABBBBAAIEPCJR9AO2PbT9RrlV8\nBnp35cNKXG9qZq7yY+Uc5TmFQgABBBBAAAEEEEAgU6DsA+iw0zM0cXgy47PO/v3P/RT/YZWF\nCoUAAggggAACCCCAQE0CDX/NbU17+f6VemrW8b6vrqymUAgggAACCCCAAAII1CTQLAPo7aXB\nn/Ku6SnBSggggAACCCCAAAIdCTTDJRwnC+DUBOGfuuVPeXf0jGAZAggggAACCCCAQIcCZR9A\n86e8Ozz8LEQAAQQQQAABBBDIK1D2SzjiP+X9YAc4/m0ddyr+U97/Uo5UKAQQQAABBBBAAAEE\nPiBQ9gG0/6pgI/0p7w8cIBoQQAABBBBAAAEEiiVQ9gF0/Ke8a5FfWyt50D29lpVZBwEEEEAA\nAQQQQKD5BMp+DfQUHdJLlO7+U97+9XgnKL2VWmq9ZS+1tbx1e+P/uc62JS09lunvPb51e2st\n+93Y6+hwLXm8rcXHrszV+lr73i2eqv3sU+59XfZiS0vb4uZ4/ra91dLi/W2a1+pTbS2tC8v9\n/G1blLxW729rKfuff17mP3m2rDmev0tnLt/XLfTvWe1HuKH/vVe9v6ah9yDpfNn/iLz373jl\ndKW/oqFd1T/lfZLW8V8kXJEaqjtfqPSp8UH66DdTb93So+XxGtcv7mrLWoZqX5aog/5z6eWu\n1pZN9NvE/S2HhiIlrjYd0baWkdrXZ7SX5R6BtC7/3fCDtK+zS3xE23dtWcuQ5b8Rv/0PSpV7\nd5e1jNC++j0pGWKWdHc1btYrdJSev89qDzW8LHG1tayqfR2mfZ1R4r1s37XWlkEtrdrT9jFM\no+/uDdqBsxt9J5qp/5toZy9XPID2ACDOG5r3wOBHygYKhQACCCCAAAIIIIBARYGyn4HO2vEB\nauRPeWfJ0IYAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCBRC4Fj14mFl\nUiF6QycQQAABBBBAAAEECidQ9t8DnRd8Xd1htOJbCgEEEEAAAQQQQAABBKoIMICuAsRiBBBA\nAAEEEEAAAQQQQAABBBBAAAEEEECgZoFm/DV2/nPd/jV2fRX/Uv0Fin8XNIUAAggggAACCCCA\nAAKJwPa6PV+Zp8R/RCVM+682nacMVigEEEAAAQQQQAABBJpa4GTtfRgo+8/zTlWuV36r3Kjc\np/jPMXudV5QjFAoBBBBAAAEEEEAAgaYUOEx77YGxB8pjOhDwpSy7K9MUr7+zQiGAAAIIIIAA\nAggg0HQCl2qPfXmGr3eupXx99OvKubWszDoIIIAAAggggAACzSdQ9t8D7d/pfI+yuMZDO1/r\nPaKsV+P6rIYAAggggAACCCDQZAJlH0D72uaxSu8aj6vPQHvQPb3G9VkNAQQQQAABBBBAAIFS\nCXxOe+Nrmv+ofLiDPfM10Lsp/g+FS5VdFAoBBBBAAAEEEEAAgQ8IlP33QHv/jldOV/orzytz\nlFcVX+s8QBmojFCGKR48n6Sco5ShemonHAoBBBBAAAEEVlygVQ/hsQLV5AJlH0CHw7uJJs5Q\n/Js2hofG5PZN3c5VrlU8cH5OKUP5w4H/SEyzHOMyHDP2AQEEEECg2AL+Vvto5YJid5PedbVA\nr67eQEEef4b6cXjSFw8s/ZcI+yn+wyoLlTKWzzx78PwFxb+JhCqHwJe1GyOVE8uxO+yFBPw6\nvVvxsX1IocohcKR2w78SdVI5doe9SARu0e3LaCDQLAPo+Ej70g2nWeoR7ahDlUPgIO3GIMW/\nXYYqh0D4z9yPa3c4ruU4pt6LPZRFCsfUGuUpX8Lhs9BUkwuEN+4mZ2D3EUAAAQQQQAABBBCo\nTYABdG1OrIUAAggggAACCCCAwHIBBtA8ERBAAAEEEEAAAQQQyCHAADoHFqsigAACCCCAAAII\nIMAAmucAAggggAACCCCAAAI5BBhA58BiVQQQQAABBBBAAAEEGEDzHEAAAQQQQAABBBBAIIcA\nA+gcWKyKAAIIIIAAAggggAADaJ4DCCCAAAIIIIAAAgjkEGAAnQOrwVZdqv76ryW902D9prsd\nCyzhmHYM1IBL/Tr165XXagMevA667OPp1ytVLgGOa7mOJ3uDQKbAppmtNDaywBrq/JBG3gH6\nnikwUq09MpfQ2KgC/dXx4Y3aefpdUWBjLeHkY0UeFiCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAAC3SbQs9u2xIa6QqC/HnSMsouylvK6slipVL21YDvF\n66+qvKS0KVSxBDZRd3ZStky69WoH3eunZWOVnZXVlVeUZQpVLIE11B0f0+2VhcoipaNaXwvH\nKb6dpyxRqOIJ5Dmued+vi7e3zdOjzbWruytrKn79tSq11J5aaZjyXC0rsw4CCNRH4EhtNgyA\nPQh2PIA+Tsmqj6txvhLW9e3flFEKVQyBoerGH5T4GHn6VsWD6nT5zXqWEq8/U/Nup4ojcLi6\n8rISH6epmh9SoYunqt0D5rD+Uk1/vcK6NNdPIM9xzft+Xb+9au4tD9Tu/1EJrz3fvqkco1Sr\n/bWC1/9ztRVZjgAC9RPYR5v2J+KZyreUrRUPnKcrfgF/QYnrQM14/UeVgxWfBfuV4h/MbvOZ\naaq+Aqto87crPn5XKB9TxikXKD52jyk+2xxqQ00sUPyhyIOrrZSvKT5b7TOcGylU/QV2Vxf8\nOntGOVrxa3Wy8pbitr5KXH5t+zlwjeLX6b8pNylu+6pCFUMgz3HN+35djD1szl7crN32a+3X\nil97n1T+qrjtKKVSDdaCFxWvxwC6khLtCBRA4Db1wS/UfVN92TFpfzzVPk3zPjs9KtXugZof\nZ3yqndnuFxinTfpY+Mxkum5Qg5cdFi04KWk7LWrz5CmK1/2OQtVf4Hp1wcfjgFRXfpO0e3AV\nyl/xz1TmKPHldX2Sdn8tHLdrlqqTQJ7jepv66OdAre/Xddqlpt/sDslx8s/LuDbWjE9i3B03\npqav1bwv9fBxZgCdwmEWgaII+Ezl/YoHyVk/TH0W2me8wrJxmvaL+ptKujZQw17KkPQC5rtd\nYIK2OFP5UsaWP6s2H8PJ0bLvJ22fiNo8uWfS/stUO7P1ETham/2B0iO1eX9L5GMaX3Llbx3c\n5mObrjPU4GXpgXh6Pea7R6DW45r3/bp7es9WsgS2VKNPSOydsfBZtb2W0e6mYxS/Ng9Kbv2N\nEYUAAg0m4K/4/fX9P6J+n6Bpv7jHJG3+TxG7KIOTeW6KL/BtddHH8PNRV/3Bx23+qj+uKZoJ\nb+ZxO9PFEfBg2sfNx2mrqFuTk7ZPRW1h0l8le32vQxVToNJxrdTbrPfrSuvSXj8BX0q1TPld\nRhdGqW2R8gvFx9OvUQbQQqAQaDSB8APYZ7xCna0Jv6g3Vq5T/EbgeedqZZBCFVdgHXXtZcUf\njIZG3fQ3DKcq/rbhMcVnLR9U/FXjj5XeClUsgXCGy8fJr8OTUt37X837dTku1e7Z3RQv87WZ\nVLEEqh3XSr2drAU+pvH7daV1ae9eAX8Ymqhcrvjyx0eUjZS4emnG3wZPV/orDKCFQCHQiAKf\nVqf9Q/lpZdVoB67QtN+k/UP7YeUo5TNK+G0Pd2vabxZU8QRWU5fuVXz8fNzSNVINfmP38hB/\n++CzIlTxBDz4DcfJ/4Fwm1QXL0mWx2elwypu830vDQ3cFkag2nHN6mil9+usdWnrfoHh2mR4\nrfr2dCV9UuK7alui7Ki4GEC3O/AvAg0lMFG9fUd5UdlCietGzfgN4AnFL/C47tSMl3lATRVL\nwGee/R8KfXzOyeiafwC/qdyj+A3cg23f3qW8oXg5VSyB9dWddRVfM+nffuMfvp4Odb4mfLzT\nA2svH50su8gzVKEEqh3XdGcnqqHS+3V6XebrI+CTUBsoOyjnKn6tPq6srrh2VpYqkz2TFAPo\nIMEtAg0icLL66R+6M5TNMvp8YbL8KxnLvpws+2nGMprqJ+Azyz5D6ePqMx9Z5YHzK8rA1EJf\n4z5X8bcNVHEFwhllD6RD+T8w+ZiPCw3R7XhNe9nPozYmiyeQdVzjXlZ7v47XZbo4Ar9TV/z6\nO0RZQ/HPW3+rO0Dx5RuO34u9zi3JfB/dUgggUEABX3bhM5N+wd6v+MxWVoUfyodmLPSA2/fn\na+EMnDo1+fcEewDsMx5HV+jDYLX7cp3fV1g+Re0+rhtWWE5zMQTuVTfi4zQpmT84o3ufSpZ9\nM2MZTcUSSB9X967W9+ti7Qm9CQL7acKvVZ+Q2j2Z9nxH8fXTVIkFepV438q8a6to5y5QJiq+\nlvlzir/Oz6onk8Yxur0qtcKwZH5aqp3Z+gj460L/DlFfa3eAcrOSVR48+zkwJGuh2sKZj54V\nltPcPQL+uvch5Z/KnhmbbE3aFiW34bU6TvPpD0duc/nDMlVfgbzHNc/7dX33rLm3/jXt/rcV\nn2W+NUURv1Z9giPrmyCPp45V/Hq/VvEZagoBBAom4BepP/leo1QbJHkw5Rf088p6Slzha6mx\ncSPTdRHwNXczlbeVnWroga/H83WUHnTH5WO8QJkTNzJdN4EHtGV/4Nk+1QMfY7f/PdX+iOZf\nUPzVcChflvOi4nU56RFU6nub57jmeb+u714199YP1O7752r6w6tVbkiWfdIzFaqf2n3/myos\npxkBBOosMEjbn6/4hfoXxWegs+KzJKEmaMKfoJ9QJin7Kr5sw4/xQ4Wqv8Bp6oKPhz/oZB1P\nt31JCbWbJjwAe035hrKH4uWzFT/O/gpVf4Fd1QVfjjNP+YGyl+IzXQuVxUp6YH242nz8PEDz\nZVeHKT6T5f+w5G+RqGII1HpcO/N+XYw9bL5e+DKbPyl+/fnbvyOUgxQPiN12pdJRMYDuSIdl\nCBRAwJ+A/WKulrVTffWAKgyufF9/DXWW4jcNqv4Cf1cXqh3Tc1Ld9CD60dT9ntL8Pqn1mK2v\nwN7a/HQlPr7+T6DbVuiWL8nyB6OwvqePqrAuzfUTqOW4dvb9un571dxbHqDd/5niD6zh9feG\npr+j9FY6KgbQHemwDIESCAzVPnyoBPvBLrwn4LNcY5XB7zUxVUABX16zo7JWDX3zB9tNla2U\nvjWszyr1E8hzXOvXS7acR8CX1G2nbKZUu0wyz+OyLgIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCFQR6FllOYsR\nQACBjgSGaOFuyqHKLsoayqIkummY2lk93UF5RmlrmF7T0WoCfbTC95Q5yivVVm6Q5Ueon9sp\njzRIf+kmAggggAACCEQCR2n6bcUDzjjLNP8tpZHqJnXW+7BqI3WavlYV+K7WeFQp08misdof\nv+5GKxQCCCCAAAIINJDAV9RXDzh9FuwwZStlC+UQ5QHFy36uNEoxgG6UI1V7Pz3AfEc5oPa7\nNMyal6mn05QyfTBoGHw6igACCCCAQGcF7tMdfaZ564wHGKG2JYov5eiXsbyITQygi3hUVqxP\n1+ruj63YQxT23tuqZ/6Q+pnC9pCOIVBygV4l3z92DwEEVr7AKnpI/wB/SXki4+Fnq+1niq+J\n3lx5WInL7b6Gc1PlNeVpxYMdfy0darwm1lGuUnZU9lL8fnWbcrfi8mPvp2yg/E25QvGgItR4\nTayruN33312Zr9yg+FrnWsrb9BlM97ev8pBynfKWUq3Ga4UV3QdvI28favUdrMf+nTJGGa/Y\nyvt3jbJYqaW8f7b1sVhL+Ydyl1Lp+tyRWvYxZZgyVfmT8gllSTKtm3drlKb2VPzYs5TblUqP\nq0XvK9/nQOXkqHUnTW+m3KLMjdo92UP5vDJP+bMSKk8farEYpAf+uOLn8OqKv735u3Kj8oZi\nl0MVO7kvjys3KEuVuPyaeko5SfHzm0IAAQQQQACBBhD4i/roweo3FQ/waqk1tdKViu/Xqryc\nTHveg4HhSigP4p5T/kfxcn8V71vnWOVgZbESt1+u+bj8GK8oP1HCNjyA9vR5SlxZZ6A30Qr3\nKV5/oeLH8rQ/NIxWqtXK2Ic8fcjr60HkCYqPhQew3jfnQWWgUq0+qRXCMbSPPwD5/v5m4utK\nun6lBi/3tjw49LQHf88q9ypxnagZH1/3zc8DDyD9uGcoHuxWq7O0gh/fA+lQn9WE284MDdHt\neE172eSoLU8farUYm2zH+7EgmfZ2d1H2VoKhn2vefy+bpqynpOu7avDy7dILmEcAAQQQQACB\nYgrsrG69qvgH+EvKJcoEZYRSqU7RAq//U8Vn61xbKD4L6nYPKkJ58OnB07+Ujyq9lX0VD9Q8\nsHhN+aris54bKU8rfgw/Xig/htvcz12TRg/2f624/ZikzTfpAbQHaR64eNDmM5Nh0LaPpv14\nTyl9lI5qRfchbx9OUWe8X3l8PZCdpKytDFWuV/wY31I6qgFa+Lpiix2UnspqykGKj8+bigf0\nof5DE37cixSv5/Kg0YN4t9+nhDpQE267QxmeNK6h28sUt09I2jq6uVkL/dhx+XKi+cpsJRzP\nsPxCTfj5tnHSkKcPeSzCANofIq5S9lc8UHfNUF5WtvSManXFrwnv8/eVdO2hBi+bmF7APAII\nIIAAAggUV8Bn98LXy/5BHuKvnY/O6LYHdh7Y9E8tC4MKDyhChcHvV0JDchsGeKel2r+jeW//\n4Kg9PMZxUZsn+ypzlOc9k1R6AP1ZtfvxrgsrRLfetpd5UNhRhe13dh/y9qEzvul98ODN++a+\nd1Qf0UKbHZWxks38GFtHy/whywNX28f1ac143XgAPT1p8/MiLg+8PTD3wDg9AI7X87TXSZ/V\ndns4Cz7OM0n5+egPA7eFBt3m6UMei/Bc9/MvtvDg3h/WblfiffM6/jDzMSVdI9Vgux+mFzCP\nAAJdL+CzMRQCCCDQGQGfhT1AWUvZS9lT2VvxIMxneX3W1wO0txXX8e037/7rs9AfUnw/V3pg\n7bYH/E9Uj2ra27w/avPkC8m8z1Sm67JUg8+QeiD/RWWIMk9JlwdFrluV0cun3vvniWTSZ17P\ne6+54lRn9yFvHzrjOzXV61nJ/IBUe3rWg9P9osbemvaAbjvF11K7wvFcX9N2PlexfVweqHvg\nGMrPpc2VZxSfpU3bT1Pb7spwJf4ApNl3y2fThyl3v9vy3sRvNDlJ8bcKdyTNB+nWz5spyXze\nPuSxSDax/P8FxBZ+jbi/Htj7mFyp3KQ8qZypZJUH4R5Axx9UstajDQEEukCAAXQXoPKQCDSZ\nwALt79VJvOse4JyvHKn8RblIca2ifEGZqGyjDFJc/lrdFZ95a29pP2sZpn0bBlveZlyhPW7z\n9BvKK+lGzXvw4XI/3Md0jUoazk4viOY3jaY7mpydWhj6Wm0f8vahM74vpvrmgZzLj1WtvP8n\nKuMVT/dSWpV/Ka5wPLdtn33XPJldfrNU/8Z9CPvs24fjFVPT3t7zqbYwu2UyMSc0RLf3a9of\ngA5V/lPxINbPUz9PrlJcnemD+1OLxfIN6J+ZYSK6dZ9+q+yhfETxc8/rXaR8T3lHict9f1kJ\n+xsvYxoBBLpYwG94FAIIIJBH4FNaeaJylnKXkq471fDvyl8Vny32AMD1C+VYZYZypeKziR4k\nzVXCGWRNvq/Sg4b3LaxhprfW8UDOZ+riGpDMxIO3eHkYSH5Ojb78IKv8tX8t1dl9yNuHzvh6\nwNuZ+pDu5DOlPnP7Z+Vi5SHFx/QU5ctKqEXJxMDQkLr1tdJhMBz22Y/5w9R68exj8UxqOuzT\nWqn2MPsbTfixD1C8D3srlyihn3n7kMdCm1leWc+JeVqyp7KZ4ks29lPGK5OVnZSPKnGtohk/\njz34pxBAoJsFenXz9tgcAgg0voAHjgcqHljeVWF3Xk3aw2DEX+F78OyzfzsobymhdkkmeoaG\nlXjbR481QpmVekwPet5Upqfaw+zTyYT3NX2G2gMz78OLyTpddZOnD93te5x22pdKTFSmKHF5\nAOgKxzMYhzPR7Uvb/x2pm9Wjhn9o2h921lHS7l7tw4rP4Iez3G5LV/gw5mOcVRer8UzlEGWw\n4n7+nxIqbx/yWIRtpG9XU8P2ysvKU4qP/TnKIMUfMvdVhitzlVB+XvdTwv6Gdm4RQKAbBPwJ\nlkIAAQTyCNyhlRcqE5T/yrijBwOnJ+1/TG43Tm496I4Hzz477IG1y2eLu6KOTz2oB3IekPxV\nCZdTpFZpcb89kPu24gFWXL/QzC2Kzwp2ZeXpQ3f7hu3NTAF4EBhcwvH0Mb9G2UvZRwllVw9k\n4/Jz42ZlrLJ/vEDTWyl3KhcoPjaVyoNMf3DbvMIK7s+NygGKB9GzlDuUUHn7kMcibCN9u6ka\n/Hy8JLXAH0RnK36ehg+jYZXwAcHf6FAIIIAAAggg0AAC49VHX1vsgYzPKk9RTlEuVvwD3+0e\nDPRRXP0Vf0Xt9tMVD7I+o/xe8VfQHrT4TFsoD7i8rs/AxeX7un0+vJOVAAAEhElEQVTXuFHT\nExW3H6mECo/hr/R/qXjQ7MG6z/I9pwxTQt2kCd9/1dCg2wuTtrt0674erHg/vd61SrUK21+R\nfai1DyvL1ydVvH+3Vtm5ryXrPaDbw5WdlW8otvWgz49hr1CbacJnSt9RbOjjeL/i9b3uPUoo\nD3z9fHAmKx50f13xmeGlis/+V6sbtIIf12fms8p983Ln1IwV8vQhj4U/GHibZ2ds0+Ze9gdl\ngvJp5SLFbVcr6fIHQy87Ir2AeQQQQAABBBAorsAm6tp1yvOKf5A7PlPmAbUHPOnyoPcZJazr\nwZDvv1Fy6/sOV1wrY/AZHsPXMftyC293seKzx6OVuLIG0B5MenC0QAl9btW0/7PZUKVahe2v\nyAA6Tx9Whq+3532tNoDuqXV+pfgYBhsbH614gOu2c5W41tfM5cpMxR+mPCj0c8jr+pjE5bOr\ndyp+ToTHn6PpCUotNUkr+X4frbByb7W7Dz6e7kNW1dqHPBYdDaD9PLlMiU19CZG/8XB/0+UP\nIkuUtdMLmEcAAQQQQACBxhAYqG6OUeLrWbN67gHaRooHsP2Urqx4ANtDG/JZxTU6ucENdT9f\n+jGgk/dfGXerpQ/d6et9ssd2Svjg47asWiurUW2DFQ90f1thuc+s+/FHKB6o1lp+Hs5Vrq9w\nh15qf0G5vcLyuLnWPtRqET921rT7vpUySvHzNqvWVaPP0PtDDIUAAggggAACCKw0gXgAvdIe\nlAfqlIDPHj+p9End+3ua9wA661r61Kq5ZyfoHj7DvE3GPX3Zibfrbycasezmb0bWacTO02cE\nEEAAAQQQKK4AA+jiHJufqSsesN6s+PIKX7d7vuJLEKYqnf1mQHetWD57O025OFrjTE370pJF\nigf0WZdGqLnQZav5ygmF7iWdQwABBBBAAIGGFLhCvfY1z768hKqvgM88/0R5Q/FA2nleuVRZ\nU+mq2kUP/I4yItnAw7r1tmcpvkSiEcvX5T+tNOLgvxG96TMCCCCAAAIIIFBXAQ/6/J/2NujG\nXmyrbYVLHXx98chu3HZXbMrX8vs/ZFIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA\nAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA\nAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg\ngAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAII\nIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAAC\nCCCAAAIIIIAAAqUT+H8kaHpt3ikytQAAAABJRU5ErkJggg==", "text/plain": [ "Plot with title “Sampling distribution of the sample mean age \n", " (from samples of 10)”" ] }, "metadata": { "image/png": { "height": 360, "width": 360 } }, "output_type": "display_data" } ], "source": [ "options(repr.plot.width=6, repr.plot.height=6)\n", "sample.means <- sapply(study_measurements_age, mean)\n", "\n", "# Draw graphs using base R\n", "hist(sample.means[1:10000], freq=FALSE,\n", " breaks=c(0, 25.5, 26.5, 27.5, 28.5, 29.5, 30.5, 31.5, 32.5, 33.5, 34.5, 100), \n", " xlim=c(26, 35), ylim=c(0, 0.3), col=\"green4\",\n", " xlab=\"Sample mean age (years)\", \n", " main=\"Sampling distribution of the sample mean age \\n (from samples of 10)\")\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### 4.3.3 The standard error of an estimate\n", "\n", "When we are talking about the sampling distribution (i.e. the distribution of an *estimator*), we call the standard deviation the **standard error**. The standard error refers to the variability we might expect in estimates of the parameter, because we are inferring the estimates from a sample. When we have two different estimators for the population parameter of interest, we would typically choose the one with the lower standard error. \n", "\n", "
\n", " The standard error \n", " \n", "If an independently distributed random variable $X$ has population mean ($\\mu$) and population variance ($\\sigma^2$), the sampling distribution of sample means (of samples of size $n$) has population mean $\\mu$ and population variance $\\sigma^2/n$. This irrespective of the population distribution; it does not need to be *normal*. In other words the standard error is $\\sigma_{\\bar{X}} = \\sigma/\\sqrt{n}$.\n", "\n", "
\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.0.4" } }, "nbformat": 4, "nbformat_minor": 4 }